Exercise 1. Let $\left\{f_{n}\right\}$ denote the Fibonacci sequence, as defined in Exercise 2.2.2. Let $\beta<\alpha$ denote the roots of the polynomial $x^{2}-x-1$. Use strong induction to prove that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right)
$$

for all $n \geq 0$. [Suggestion. Except in the base cases, do not use the expressions for α and β that come from the quadratic formula. Instead, notice that since $\alpha^{2}-\alpha-1=0$, we have $\alpha^{2}=\alpha+1$, and likewise for β.]

Exercise 2. If $a, b, n \in \mathbb{N}$, use the strong form of Bézout's lemma to prove that $(a, b)=1$ if and only if $\left(a^{n}, b^{n}\right)=1$. [Suggestion. For the forward implication, write $r a+s b=1$ and expand $(r a+s b)^{2 n}$ using the Binomial Theorem. The converse is trivial.]

Exercise 3. Textbook exercise 2.3.20, parts (a)-(e).

Exercise 4. Textbook exercise 2.4.4.

