Exercise 1. Let $n \in \mathbb{N}$. If $\sqrt{n} \in \mathbb{Q}$, then we can write $\sqrt{n}=\frac{a}{b}$ with $a, b \in \mathbb{N}$. Squaring both sides of this equation and clearing denominators yields $n b^{2}=a^{2}$.
a. Let $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ be the set of prime factors of $a b n$. Express a, b and n in modified canonical form using these primes and conclude that n is a perfect square.
b. Part a shows that if \sqrt{n} is rational, then n is a perfect square. Formulate the (logically equivalent) contrapositive of this statement.

Exercise 2. Textbook exercise 3.1.15. Generalize "square" to " nth power," for arbitrary $n \geq 2$.

Exercise 3. Textbook exercise 3.1.16. Be sure to also prove that the factors in the product of part (b) are unique.

