

Number Theory Fall 2023

Assignment 4.1 Due September 20

Exercise 1. Let $n \in \mathbb{N}$. If $\sqrt{n} \in \mathbb{Q}$, then we can write $\sqrt{n} = \frac{a}{b}$ with $a, b \in \mathbb{N}$. Squaring both sides of this equation and clearing denominators yields $nb^2 = a^2$.

- **a.** Let $\{p_1, p_2, \ldots, p_r\}$ be the set of prime factors of *abn*. Express *a*, *b* and *n* in modified canonical form using these primes and conclude that *n* is a perfect square.
- **b.** Part **a** shows that if \sqrt{n} is rational, then *n* is a perfect square. Formulate the (logically equivalent) contrapositive of this statement.

Exercise 2. Textbook exercise 3.1.15. Generalize "square" to " n^{th} power," for arbitrary $n \geq 2$.

Exercise 3. Textbook exercise 3.1.16. Be sure to also prove that the factors in the product of part (b) are unique.