Fix a modulus $n \in \mathbb{N}$. Recall that for $a \in \mathbb{Z}$ the congruence class of $a(\bmod n)$ is

$$
a+n \mathbb{Z}=\{a+k n \mid k \in \mathbb{Z}\}
$$

which is simply the equivalence class of a under congruence $\bmod n$. By definition we have

$$
a \equiv b(\bmod n) \Leftrightarrow a+n \mathbb{Z}=b+n \mathbb{Z}
$$

Because every congruence class contains exactly one of the integers $0,1,2, \ldots, n-1$, the set of all equivalence classes (quotient space) is

$$
\mathbb{Z} / n \mathbb{Z}:=\{n \mathbb{Z}, 1+n \mathbb{Z}, 2+n \mathbb{Z}, \ldots,(n-1)+a \mathbb{Z}\}
$$

In the following exercises you will prove that $\mathbb{Z} / n \mathbb{Z}$ has the algebraic structure of a ring, so that modular arithmetic in \mathbb{Z} is equivalent to ordinary arithmetic in $\mathbb{Z} / n \mathbb{Z}$. We will take advantage of this ring structure to prove several important results in the theory of congruences.

Exercise 1. For $a+n \mathbb{Z}, b+n \mathbb{Z} \in \mathbb{Z} / n \mathbb{Z}$, define their sum to be the congruence class of $a+b$, that is

$$
(a+n \mathbb{Z})+(b+n \mathbb{Z}):=(a+b)+n \mathbb{Z},
$$

and define their product to be the congruence class of $a b$, or

$$
(a+n \mathbb{Z})(b+n \mathbb{Z}):=a b+n \mathbb{Z}
$$

Use established properties of congruences to prove that these operations are well-defined. In other words, prove that if $a+n \mathbb{Z}=c+n \mathbb{Z}$ and $b+n \mathbb{Z}=d+n \mathbb{Z}$, then

$$
(a+b)+n \mathbb{Z}=(c+d)+n \mathbb{Z} \quad \text { and } \quad a b+n \mathbb{Z}=c d+n \mathbb{Z}
$$

Exercise 2. Show that $\mathbb{Z} / n \mathbb{Z}$ with the addition operation defined above is an abelian group.

Exercise 3. Show that $\mathbb{Z} / n \mathbb{Z}$ with the multiplication operation defined above is a commutative monoid.

Exercise 4. Show that multiplication of congruence classes in $\mathbb{Z} / n \mathbb{Z}$ distributes over addition of congruence classes.

