Number Theory
Assignment 5.3
FALL 2023

Recall that for $n \in \mathbb{N}$ we defined

$$
\mathbb{Z} / n \mathbb{Z}=\{a+n \mathbb{Z} \mid a \in \mathbb{Z}\}=\{n \mathbb{Z}, 1+n \mathbb{Z}, 2+n \mathbb{Z}, \ldots,(n-1)+n \mathbb{Z}\}
$$

which is the set of congruence classes modulo n.

Exercise 1. Fix $n \in \mathbb{N}$ and let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$. Prove that the following are equivalent.
(i) The integers $a_{1}, a_{2}, \ldots, a_{n}$ form a complete residue system modulo n.
(ii) For any $a \in \mathbb{Z}$ there exists an i so that $a_{i} \equiv a(\bmod n)$. [Question. How does this differ from the actual definition of "complete residue system modulo n ?"]
(iii) For all $1 \leq i, j \leq n$:

$$
i \neq j \Rightarrow a_{i} \not \equiv a_{j} \quad(\bmod n)
$$

(iv) $\mathbb{Z} / n \mathbb{Z}=\left\{a_{1}+n \mathbb{Z}, a_{2}+n \mathbb{Z}, \ldots, a_{n}+n \mathbb{Z}\right\}$ (in this case one says that $a_{1}, a_{2}, \ldots, a_{n}$ represent $\mathbb{Z} / n \mathbb{Z})$.

Exercise 2. Textbook exercise 4.2.12.

Exercise 3. Textbook exercise 4.2.15.

Exercise 4. Textbook exercise 4.2.16.

