Exercise 1. Textbook exercise 2.5.2.

Exercise 2. Textbook exercise 2.5.5.

Exercise 3. We can provide an alternate proof of Theorem 2.9 using a little linear algebra as follows. Let $a, b, c \in \mathbb{Z}$ with $a b \neq 0$. Bézout's Lemma implies that $a x+b y=c$ has a solution $\left(x_{0} y_{0}\right)^{T} \in \mathbb{Z}^{2}$ if and only if $(a, b) \mid c$. Assume that this is the case.
a. The equation $a x+b y=c$ can be written in matrix form as

$$
\underbrace{\left(\begin{array}{ll}
a & b
\end{array}\right)}_{A} \underbrace{\binom{x}{y}}_{\mathbf{x}}=c .
$$

A standard result from linear algebra states that the solutions $\mathbf{x} \in \mathbb{Q}^{2}$ to $A \mathbf{x}=c$ are given by

$$
\mathbf{x}=\mathbf{x}_{0}+\mathbf{z},
$$

where $\mathbf{x}_{0}=\left(x_{0} y_{0}\right)^{T}$ and $\mathbf{z} \in \mathbb{Q}^{2}$ is any vector in the nullspace of A. Use the Rank Theorem to show that the nullspace of A is 1 -dimensional, and is \mathbb{Q}-spanned by $(-b a)^{T}$. Conclude that the solutions to $A \mathbf{x}=c$ with $\mathbf{x} \in \mathbb{Q}^{2}$ are given by

$$
\mathbf{x}=\mathbf{x}_{0}+t\binom{-b}{a}, t \in \mathbb{Q}
$$

b. Continuing part a, show that $\mathbf{x} \in \mathbb{Z}^{2}$ if and only if $t(-b a)^{T} \in \mathbb{Z}^{2}$ if and only if at, bt $\in \mathbb{Z}$ if and only if $t \in \frac{1}{(a, b)} \mathbb{Z}$. [Suggestion. Write $r a+s b=(a, b)$ with $r, s \in \mathbb{Z}$ and multiply both sides by t.]
c. Conclude that $A \mathbf{x}=c$ with $\mathbf{x} \in \mathbb{Z}^{2}$ if and only if

$$
\mathbf{x}=\mathbf{x}_{0}+\frac{\ell}{(a, b)}\binom{-b}{a}, \quad \ell \in \mathbb{Z}
$$

Show that this is equivalent to the conclusion of Theorem 2.9.

