Number Theory
A Totient Identity
FALL 2023

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If $a \equiv b(\bmod n)$, then $a=b+n k$ for some $k \in \mathbb{Z}$, so that

$$
(a, n)=(b+k n, n)=(b, n)
$$

by the bi-periodicity of the GCD. It follows that the function $x \mapsto(x, n)$ is constant on any given congruence class $a+n \mathbb{Z}$ so that the set

$$
\{a+n \mathbb{Z} \mid(a, n)=d\}
$$

is well-defined for any positive $d \mid n$, and we have a partition (disjoint union)

$$
\begin{equation*}
\mathbb{Z} / n \mathbb{Z}=\coprod_{d \mid n}\{a+n \mathbb{Z} \mid(a, n)=d\} \tag{1}
\end{equation*}
$$

of $\mathbb{Z} / n \mathbb{Z}$. We can count the size of each "part" using the φ-function as follows.
If $a \in \mathbb{Z}$ and $(a, n)=d$, then $(a / d, n / d)=1$ and $\frac{1}{d}(a+n \mathbb{Z})=\frac{a}{d}+\frac{n}{d} \mathbb{Z} \in \mathbb{Z} / \frac{n}{d} \mathbb{Z}$. We therefore have a map

$$
\begin{aligned}
\{a+n \mathbb{Z} \mid(a, n)=d\} & \rightarrow\left(\mathbb{Z} / \frac{n}{d} \mathbb{Z}\right)^{\times} \\
a+n \mathbb{Z} & \mapsto \frac{a}{d}+\frac{n}{d} \mathbb{Z}
\end{aligned}
$$

which is clearly a bijection (multiplication by d is its inverse). It follows at once that

$$
\varphi(n / d)=|\{a+n \mathbb{Z} \mid(a, n)=d\}| .
$$

Applying this to the partition (1) we find that

$$
n=|\mathbb{Z} / n \mathbb{Z}|=\left|\coprod_{d \mid n}\{a+n \mathbb{Z} \mid(a, n)=d\}\right|=\sum_{d \mid n}|\{a+n \mathbb{Z} \mid(a, n)=d\}|=\sum_{d \mid n} \varphi(n / d) .
$$

Since n / d runs through the positive divisors of n as d does, we finally conclude that

$$
\begin{equation*}
\varphi(n)=\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d) . \tag{2}
\end{equation*}
$$

More carefully, the map $d \mapsto n / d$ is an involution (self-inverse function) on the set of positive divisors of n. Therefore the images n / d permute the set of divisors of n, and we obtain (2). This identity will be an essential ingredient in our proof of the existence of "primitive roots" modulo primes.

