

 $\begin{array}{c} \text{Complex Variables} \\ \text{Fall } 2024 \end{array}$

Assignment 11.1 Due November 20

Exercise 1. Given an open disk $D(z_0; r)$ with $z_0 \in \mathbb{C}$ and r > 0, and $z \in D(z_0; r)$, recall that we defined γ_z to be the unique L-shaped path in $D(z_0; r)$ from z_0 to z consisting of a horizontal segment followed by a vertical segment (or just one or the other if z happens to lie on either the horizontal or vertical diameter of $D(z_0; r)$). If f is analytic on $D(z_0; r)$, we then defined

$$F(z) = \int_{\gamma_z} f(w) \, dw.$$

- **a.** Complete the proof that $F_x = f$ on $D(z_0; r)$.
- **b.** Show that $F_y = if$ using a similar argument (this *does not* require Cauchy's Theorem for a Rectangle).

Exercise 2. Textbook exercise 2.3.7.

Exercise 3. Textbook exercise 2.3.8.

Exercise 4. Textbook exercise 2.3.10.