

 $\begin{array}{c} \text{Complex Variables} \\ \text{Fall } 2024 \end{array}$

Assignment 9.1 Due November 6

Exercise 1. Let $\emptyset \neq A \subset \mathbb{C}$ be open, let $f : A \to \mathbb{C}$ be continuous, and let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth path whose image lies in A. If $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ and γ is smooth on each $[t_{j-1}, t_j]$, we defined

$$\int_{\gamma} f(z) \, dz = \int_{a}^{b} f(\gamma(t)) \, \gamma'(t) \, dt = \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} f(\gamma(t)) \, \gamma'(t).$$

Prove that this is independent of the partition $P = \{t_j\}$ of γ into smooth pieces. [Suggestion: If P and P' are both partitions of [a, b] on whose subintervals γ is smooth, show that the integral using either partition is equal to the integral using the common refinement $P'' = P \cup P'$.]

Exercise 2. Textbook exercise 2.1.1.

Exercise 3. Textbook exercise 2.1.7.