On the Differentiability of Certain Functions Defined by Path
Integrals

R. C. Daileda

Let v be a piecewise smooth path in C, suppose g(z) is continuous on im~, and let n € N. Define

f:C\im~y — C by

f(w) :/ (Zg_(zu)})n dz

The purpose of this note is to provide a direct proof of the following result.

Theorem 1. The function f is analytic on C\ im~ and satisfies
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Proof. Fix zp € C\ im~. For w € C\ im~ we have
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Now let R = min{|z—z| : z € im~} > 0. Then |z — 29| > R for all z € im~. Moreover, if |w—zo| < R/2,
then for any z € im~y we have
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Thus, for |w — 29| < R/2, along im~ we have
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Because ¢ is continuous and im+ is compact, there is a constant M > 0 so that |g(z)| < M for z € im~.
Our work above then implies
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This can be made arbitrarily small by taking w sufficiently close to zy, proving that
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f/(ZO) = lim (z — zo)nH1
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Since zp € C\ im~ was arbitrary, the statement of the theorem follows. O

Notice that f’(w)/n has the same form as f(w), but with the exponent n+1 in place of n. Because n € N
was arbitrary in Theorem 1, we can apply the theorem in the n+ 1 case to conclude that f/(w) = n- f'(w)/n
is analytic on C\ im~y, with

ff/(w)zﬁu(nA%dz> :n/vaaw(zf(u%dz:n(n+l)/v(z_g(j))n%dz.

An inductive argument can be used to show that this line of reasoning continues indefinitely.

Corollary 1. f is infinitely differentiable on C\ im~y. For every k > 0,
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In particular, differentiation under the integral sign is valid.



