On the Differentiability of Certain Functions Defined by Path Integrals

R. C. Daileda

Let γ be a piecewise smooth path in \mathbb{C} , suppose g(z) is continuous on $\operatorname{im} \gamma$, and let $n \in \mathbb{N}$. Define $f : \mathbb{C} \setminus \operatorname{im} \gamma \to \mathbb{C}$ by

$$f(w) = \int_{\mathbb{R}} \frac{g(z)}{(z-w)^n} \, dz.$$

The purpose of this note is to provide a direct proof of the following result.

Theorem 1. The function f is analytic on $\mathbb{C} \setminus \operatorname{im} \gamma$ and satisfies

$$f'(w) = \frac{d}{dw} \int_{\gamma} \frac{g(z)}{(z-w)^n} dz = \int_{\gamma} \frac{\partial}{\partial w} \frac{g(z)}{(z-w)^n} dz = n \int_{\gamma} \frac{g(z)}{(z-w)^{n+1}} dz.$$

Proof. Fix $z_0 \in \mathbb{C} \setminus \operatorname{im} \gamma$. For $w \in \mathbb{C} \setminus \operatorname{im} \gamma$ we have

$$\frac{f(w) - f(z_0)}{w - z_0} = \frac{1}{w - z_0} \int_{\gamma} g(z) \left(\frac{1}{(z - w)^n} - \frac{1}{(z - z_0)^n} \right) dz$$

$$= \frac{1}{w - z_0} \int_{\gamma} g(z) \left(\frac{(z - z_0)^n - (z - w)^n}{(z - w)^n (z - z_0)^n} \right) dz$$

$$= \frac{1}{w - z_0} \int_{\gamma} g(z) \left(\frac{((z - z_0) - (z - w)) \sum_{k=0}^{n-1} (z - z_0)^k (z - w)^{n-1-k}}{(z - w)^n (z - z_0)^n} \right) dz$$

$$= \int_{\gamma} g(z) \sum_{k=0}^{n-1} \frac{1}{(z - z_0)^{n-k} (z - w)^{k+1}} dz$$

$$= \int_{\gamma} g(z) \sum_{k=1}^{n} \frac{1}{(z - z_0)^{n-k+1} (z - w)^k} dz$$

Therefore

$$\frac{f(w) - f(z_0)}{w - z_0} - n \int_{\gamma} \frac{g(z)}{(z - z_0)^{n+1}} dz = \int_{\gamma} g(z) \sum_{k=1}^{n} \left(\frac{1}{(z - z_0)^{n-k+1}(z - w)^k} - \frac{1}{(z - z_0)^{n+1}} \right) dz$$

$$= \sum_{k=1}^{n} \int_{\gamma} g(z) \frac{(z - z_0)^k - (z - w)^k}{(z - z_0)^{n+1}(z - w)^k} dz$$

$$= \sum_{k=1}^{n} \int_{\gamma} g(z) \frac{((z - z_0) - (z - w)) \sum_{\ell=0}^{k-1} (z - z_0)^{k-1-\ell}(z - w)^{\ell}}{(z - z_0)^{n+1}(z - w)^k} dz$$

$$= (w - z_0) \sum_{k=1}^{n} \sum_{\ell=0}^{k-1} \int_{\gamma} \frac{g(z)}{(z - z_0)^{n-k+\ell+2}(z - w)^{k-\ell}} dz$$

Now let $R = \min\{|z - z_0| : z \in \operatorname{im} \gamma\} > 0$. Then $|z - z_0| \ge R$ for all $z \in \operatorname{im} \gamma$. Moreover, if $|w - z_0| < R/2$, then for any $z \in \operatorname{im} \gamma$ we have

$$|z-w| = |z-z_0+z_0-w| \ge |z-z_0| - |z_0-w| \ge R - \frac{R}{2} = \frac{R}{2}.$$

Thus, for $|w-z_0| < R/2$, along im γ we have

$$\left| \frac{1}{(z - z_0)^{n-k+\ell+2} (z - w)^{k-\ell}} \right| \le \frac{1}{R^{n-k+\ell+2} (R/2)^{k-\ell}} = \frac{2^{k-\ell}}{R^{n+2}}.$$

Because g is continuous and $\operatorname{im} \gamma$ is compact, there is a constant M>0 so that $|g(z)|\leq M$ for $z\in\operatorname{im} \gamma$. Our work above then implies

$$\left| \frac{f(w) - f(z_0)}{w - z_0} - n \int_{\gamma} \frac{g(z)}{(z - z_0)^{n+1}} dz \right| \le |w - z_0| \sum_{k=1}^{n} \sum_{\ell=0}^{k-1} \left| \int_{\gamma} \frac{g(z)}{(z - z_0)^{n-k+\ell+2} (z - w)^{k-\ell}} dz \right|$$

$$\le |w - z_0| \sum_{k=1}^{n} \sum_{\ell=0}^{k-1} \frac{2^{k-\ell} M L(\gamma)}{R^{n+2}}$$

$$= |w - z_0| \frac{M L(\gamma)}{R^{n+2}} \sum_{k=1}^{n} \sum_{\ell=0}^{k-1} 2^{k-\ell}$$

$$= |w - z_0| \frac{M L(\gamma)}{R^{n+2}} (2^{n+2} - 2n - 4).$$

This can be made arbitrarily small by taking w sufficiently close to z_0 , proving that

$$f'(z_0) = \lim_{w \to z_0} \frac{f(w) - f(z_0)}{w - z_0} = n \int_{\gamma} \frac{g(z)}{(z - z_0)^{n+1}} dz.$$

Since $z_0 \in \mathbb{C} \setminus \text{im } \gamma$ was arbitrary, the statement of the theorem follows.

Notice that f'(w)/n has the same form as f(w), but with the exponent n+1 in place of n. Because $n \in \mathbb{N}$ was arbitrary in Theorem 1, we can apply the theorem in the n+1 case to conclude that $f'(w) = n \cdot f'(w)/n$ is analytic on $\mathbb{C} \setminus \operatorname{im} \gamma$, with

$$f''(w) = \frac{d}{dw} \left(n \int_{\gamma} \frac{g(z)}{(z-w)^{n+1}} dz \right) = n \int_{\gamma} \frac{\partial}{\partial w} \frac{g(z)}{(z-w)^{n+1}} dz = n(n+1) \int_{\gamma} \frac{g(z)}{(z-w)^{n+2}} dz.$$

An inductive argument can be used to show that this line of reasoning continues indefinitely.

Corollary 1. f is infinitely differentiable on $\mathbb{C} \setminus \operatorname{im} \gamma$. For every $k \geq 0$,

$$f^{(k)}(w) = \frac{(n+k-1)!}{(n-1)!} \int_{\gamma} \frac{g(z)}{(z-w)^{n+k}} dz.$$

In particular, differentiation under the integral sign is valid.