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1 Introduction

The goal of this note is to provide two proofs of the following result.

Theorem 1. A polynomial of the form

P (z) =
∑

(m,n)∈N2
0

amnz
mzn, amn ∈ C almost all zero,1

is identically zero on C× if and only if amn = 0 for all (m,n) ∈ N2
0.

Remarks.

1. For polynomials in just z, or in any number of independent variables, the analogous
result is relatively easy to prove. For instance, suppose

P (z, w) =
∑

(m,n)∈N2
0

amnz
mwn, amn ∈ C almost all zero,

is equal to 0 for all (z, w) ∈ C2. Notice that

P (z, w) =
M∑

m=0

N∑
n=0

amnz
mwn =

N∑
n=0

(
M∑

m=0

amnz
m

)
︸ ︷︷ ︸

qn(z)

wn =
N∑

n=0

qn(z)w
n.

For any fixed z0 ∈ C we see that

0 = P (z0, w) =
N∑

n=0

qn(z0)w
n

for all w ∈ C. But P (z0, w) is a polynomial in w with complex coefficients qn(z0), which
has only finitely many zeros in C (an impossibility), unless it is the zero polynomial,
i.e. all of its coefficients vanish: qn(z0) = 0 for all n. But z0 ∈ C was arbitrary, so this
shows again that qn(z) is a polynomial with infinitely many roots, making it identically
zero. That is, amn = 0 for all m and all n.

Clearly this argument doesn’t apply in our situation. We have w = z, so that we cannot
hold z fixed and vary w as we did above.

1That is, amn ̸= 0 for only finitely many pairs (m,n) ∈ N2
0.
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2. The space of functions f : C× → C is a complex vector space under pointwise operations.
In this context, Theorem 1 asserts that the functions χmn(z) = zmzn are C-linearly
independent. Notice that for any (m,n) ∈ N2

0 and any z, w ∈ C we have

χmn(zw) = (zw)m(zw)n = zmwmznwn = zmzmwmwn = χmn(z) · χmn(w).

As we will see, it is this very property that that is central to our first proof of Theorem
1

2 First Proof

Our first proof of Theorem 1 is purely algebraic. We Let G be a (multiplicative) group. A
character of G is a homomorphism χ : G → C×. The set CG of functions f : G → C is a
complex vector space under pointwise operations, and clearly every character of G belongs
to CG. Our main result regarding characters is the following, which is simply Theorem 12
of [1] in the case F = C. Our proof is simply a rephrasing of that given by Artin in [1].

Theorem 2. If χ1, χ2, . . . , χn are distinct characters of a group G, then they are C-linearly
independent (in CG).

Proof. Suppose not. Then there exists a linear combination

n∑
j=1

ajχj = 0,

with aj ∈ C not all zero. If I = {1 ≤ j ≤ n |aj ̸= 0}, then we may omit the terms with
indices outside of I, and the above becomes∑

j∈I

ajχj = 0 with aj ̸= 0 for all j ∈ I. (1)

So the collection of nonempty subsets I of {1, 2, . . . , n} for which a dependence relation of
the type (1) holds is nonempty. Choose I so that m = |I| is as small as possible. Note that
|I| ≥ 2, since aχ(g) ̸= 0 for all a ∈ C× and g ∈ G.

For convenience relabel the characters so that I = {1, 2, . . . ,m} for some 2 ≤ m ≤ n. We
then have

a1χ1(g) +
m∑
j=2

ajχj(g) = 0 (all aj ̸= 0) (2)

for all g ∈ G. If h ∈ H and we multiply through by χ1(h) we obtain

a1χ1(gh) +
m∑
j=2

ajχj(g)χ1(h) = 0.

And replacing g in (2) with gh yields

a1χ1(gh) +
m∑
j=2

ajχj(g)χj(h) = 0.
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Now if we subtract the second of these two equations from the first we find that

m∑
j=2

aj(χ1(h)− χj(h))χj(g) = 0,

for all g, h ∈ G, or
m∑
j=2

aj(χ1(h)− χj(h))χj = 0, (3)

for all h ∈ G. Since χ1 ̸= χ2, we may choose h ∈ G so that χ1(h) − χ2(h) ̸= 0. Then the
j = 2 coefficient in (3) is nonzero. Omitting those terms for which χ1(h) = χj(h) we obtain
a sum of the form (1) for which |I| ≤ m− 1 < m, contradicting the minimality of m. This
establishes the theorem.

Question. Where does the proof use the fact that all of the χj are pairwise distinct? It
would appear that we only need to know that just two of them are distinct (χ1 and χ2).
Why isn’t this the case?

This theorem has interesting consequences. For instance, if G is finite of order n, then
dimCG = n, and Theorem 1 implies that G has at most n distinct characters (exactly n if
and only if G is abelian, it turns out). And it should be pointed out that the proof we have
given is just as valid if C is replaced by any other field, which yields Theorem 12 of [1]. It is
in this more general context that Artin [1] uses the independence of characters while building
up the theorems of Galois theory. Our main application will be to the group G = C× and
the characters χm,n(z) = zmzn, for m,n ∈ Z.

First Proof of Theorem 1. It suffices to prove that the characters χmn(z) = zmzn are distinct
for distinct pairs (m,n) ∈ Z2. To see this, suppose zmzn = zkzℓ for all z ∈ C. Then
zm−k = zℓ−n for all z ∈ C×. In particular, 2m−k = 2ℓ−n, which implies m−k = ℓ−n = N ∈ Z
by the Fundamental Theorem of Arithmetic. We then have zN = zN = zN for all z ∈ C×.
But this means zN ∈ R for all z ∈ C×, which is impossible (take z = eiπ/2N) unless N = 0.
Therefore m = k and n = ℓ, as claimed. As observed above, this completes the proof.

3 Second Proof

We now turn to our second (analytic) proof, which takes advantage of the differential operator

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

If A ⊆ C is a nonempty open subset of C, one can show that ∂/∂x and ∂/∂y are C-linear on
C1(A), the space of functions f : A → C for which u = Re f and v = Im f have continuous
first order partial derivatives. Hence ∂/∂z is C-linear on C1(A), too. It also obeys the
Leibniz product rule:

∂(fg)

∂z
= f

∂g

∂z
+ g

∂f

∂z
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Moreover, if f ∈ C1(A), then f is analytic on A if and only if ∂f/∂z = 0, by the Cauchy-
Riemann equations.

Notice that
∂

∂z
(zmzn) = zm

∂

∂z
(zn) + zn

∂

∂z
(zm) = zm

∂

∂z
(zn),

because of the product rule and the fact that zm is analytic on C×. Furthermore

∂

∂x
z =

∂

∂x
(x− iy) = 1− 0i = 1

and
∂

∂x
zn+1 =

∂

∂x
(zn · z) = zn

∂

∂x
z + z

∂

∂x
zn = zn + z

∂

∂x
zn

can be used to provide a quick inductive proof of the power rule:

∂

∂x
zn = nzn−1 for n ∈ N.

However,
∂

∂y
z = 0− i = −i

so that
∂

∂y
zn+1 = −izn + z

∂

∂y
zn

as above, and the power rule instead becomes

∂

∂y
(zn) = −inzn−1 for n ∈ N.

We finally conclude that

∂

∂z
(zn) =

1

2

(
nzn−1 + i(−inzn−1)

)
= nzn−1,

for n ∈ N, as expected. This holds trivially for n = 0, provided we interpret 0 · z−1 as the
zero function.

We now have
∂

∂z
(zmzn) = zm

∂

∂z
(zn) = nzmzn−1.

So if f(z) is an analytic function of z we have

∂

∂z
(f(z)zn) = f(z)

∂

∂z
zn + zn

∂

∂z
f(z) = f(z)

∂

∂z
zn = nf(z)zn−1. (4)

Relative to ∂/∂z, analytic functions of z act like constant multiples.

Second Proof of Theorem 1. We prove the contrapositive. Suppose P (z) is not identically
zero. Then at least one amn ̸= 0. That is, there exists an n so that qn(z) is not the zero
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polynomial. Let N ′ denote the largest n so that qn(z) is not identically zero. Then amn = 0
for all m and n > N , and

P (z) =
N∑

n=0

qn(z)z
n =

N ′∑
n=0

qn(z)z
n,

so that we may assume N ′ = N and qN(z) is not identically zero.

The rule (4), applied N times, tells us that

∂N

∂zN
P (z) = N !qN(z),

since any term of the form qn(z)z
n with n < N will eventually differentiate to 0 under ∂/∂z.

Since qN(z) is not identically zero, neither is N !qN(z). That is,

∂N

∂zN
P (z)

is not identically zero. But this requires the same to be true of P (z), which is what we
needed to show.

Remarks.

1. The idea behind this proof comes from an analogous proof for polynomials in one
variable. If p(z) =

∑N
n=0 anz

n with an ∈ C, then p and all of its derivatives are complex
polynomials in z, and are hence entire. So we may differentiate p(z) as often as we like.
We find that

p(m)(z) =
dm

dzm
p(z) =

N∑
n=0

an
dm

dzm
zn =

N∑
m=n

ann(n− 1) · · · (n− (m− 1))zn−m,

since dm

dzm
(zn) = 0 if m > n. There for p(m)(0) = am ·m! or

am =
p(m)(0)

m!
,

which should look familiar from the theory of Taylor series. If p(z) is identically 0, then
so is p(m)(z) for all m ∈ N0, and we find that

am =
0

m!
= 0 for all 0 ≤ m ≤ N,

as expected.

Even though we can write the P (z) from Theorem 1 as

P (z) =
N∑

n=0

qn(z)z
n,
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where each qn(z) is a complex polynomial in z, and

∂m

∂zm
P (z) =

N∑
n=m

n(n− 1) · · · (n− (m− 1)) qn(z)z
n−1,

we cannot extract the coefficient qm(z) by simply setting z = 0 as we did above. Because
if z = 0, then z = 0, and all we conclude is that

∂m

∂zm
P (z)

∣∣∣∣
z=0

= m! qm(0).

So if P (z) is identically zero, all this tells us is that qn(0) = 0 for all n, which doesn’t
give us much information about the coefficients of qn(z). To get around this problem,
we differentiated P (z) N times, leaving only N !qN(z) as the Nth derivative. Therefore,
from the vanishing of P (z), we get N !qN(z) = 0 for all z ∈ C, which makes qn(z) the
zero polynomial. This reduces the z-“degree” of P (z) by one, as we have seen, and
allows us to get our hands on the remaining qn(z) by repeating this argument (that is,
by induction).

2. My original second proof was along the same lines, but used induction on N . I’d like
to thank Arseny Mingajev for pointing out the shorter proof given here.
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