Putnam Exam Seminar
Handout
Fall 2010

Exercise 1. Define a sequence $\left\{a_{n}\right\}$ recursively by setting $a_{0}=1, a_{1}=2010$ and

$$
a_{n+1}=B a_{n}-a_{n-1}
$$

for $n \geq 1$. Determine the value of B so that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=3+2 \sqrt{2} .
$$

Exercise 2. Determine the exact value of $\left\{x_{n}\right\}$ if $x_{0}=0, x_{1}=1$ and $x_{n+1}=2 x_{n}+x_{n-1}$ for $n \geq 1$.

Exercise 3. Determine if the series

$$
1+\frac{1}{2} \frac{19}{7}+\frac{2!}{3^{2}}\left(\frac{19}{7}\right)^{2}+\frac{3!}{4^{3}}\left(\frac{19}{7}\right)^{3}+\frac{4!}{5^{4}}\left(\frac{19}{7}\right)^{4}+\cdots
$$

converges or diverges.

Exercise 4. Show that the series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{12}+\cdots
$$

whose terms are the reciprocals of the integers that have no prime factors larger than 3, converges, and determine its sum.

