

Putnam Exam Seminar Fall 2010

Assignment 10 Due November 22

**Exercise 1.** Let G be a group with identity e and  $\phi: G \to G$  a function such that

$$\phi(g_1)\phi(g_2)\phi(g_3) = \phi(h_1)\phi(h_2)\phi(h_3)$$

whenever  $g_1g_2g_3 = e = h_1h_2h_3$ . Prove that there exists an element  $a \in G$  such that  $\psi(x) = a\phi(x)$  is a homomorphism (i.e.  $\psi(xy) = \psi(x)\psi(y)$  for all  $x, y \in G$ ). [Putnam Exam, 1997, A4]

**Exercise 2.** Is there a finite abelian group G such that the product of the orders of all its elements is  $2^{2009}$ ? [Putnam Exam, 2009, A5]