Putnam Exam Seminar
Assignment 4
Fall 2010

Exercise 1. The sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}} .
$$

Show that, for all n, a_{n} is an integer multiple of n. [Putnam Exam, 1999, A-6]

Exercise 2. Let $\left\{x_{n}\right\}$ be a sequence of nonzero real numbers such that $x_{n}^{2}-x_{n-1} x_{n+1}=1$ for $n \geq 1$. Prove that there is a real number a so that $x_{n+1}=a x_{n}-x_{n-1}$ for all $n \geq 1$. [Putnam Exam, 1993, A-2]

Exercise 3. Consider the power series expansion

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Prove that, for each integer $n \geq 0$, there is an integer m such that

$$
a_{n}^{2}+a_{n+1}^{2}=a_{m}
$$

[Putnam Exam, 1999, A-3]

Exercise 4. Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

[Putnam Exam, 2004, B-5]

