

Putnam Exam Seminar Fall 2010

Assignment 5 Due October 11

Exercise 1. Determine whether or not the matrix

(117	218	344	511	1007	
	101	800	911	578	113	
	1212	14	4216	178	2013	
	516	19	2114	104	3416	
	789	534	114	472	300	Ι

has an inverse.

Exercise 2. Determine the number of pairs of positive integers (m, n) that satisfy the equation 19m + 102 + 8n = 2010.

Exercise 3. Consider the set $\{2, 5, 13\}$. Show that if $D \notin \{2, 5, 13\}$ then there exist $A, B \in \{2, 5, 13, D\}$ so that AB - 1 is not a perfect square.

Exercise 4. Let A denote the sum of the decimal digits of 4444^{444} and let B be the sum of the decimal digits of A. Find the sum of the decimal digits of B.

Exercise 5. Prove that every positive integer has a multiple whose decimal representation includes all ten digits.

Exercise 6. Suppose p is an odd prime. Prove that

$$\sum_{j=0}^{p} \binom{p}{j} \binom{p+j}{j} \equiv 2^{p} + 1 \pmod{p^{2}}.$$

[Putnam Exam 1991, B-4]