Putnam Exam SEminar
AsSignment 5
FALL 2010
Due October 11

Exercise 1. Determine whether or not the matrix

$$
\left(\begin{array}{ccccc}
117 & 218 & 344 & 511 & 1007 \\
101 & 800 & 911 & 578 & 113 \\
1212 & 14 & 4216 & 178 & 2013 \\
516 & 19 & 2114 & 104 & 3416 \\
789 & 534 & 114 & 472 & 300
\end{array}\right)
$$

has an inverse.

Exercise 2. Determine the number of pairs of positive integers (m, n) that satisfy the equation $19 m+102+8 n=2010$.

Exercise 3. Consider the set $\{2,5,13\}$. Show that if $D \notin\{2,5,13\}$ then there exist $A, B \in\{2,5,13, D\}$ so that $A B-1$ is not a perfect square.

Exercise 4. Let A denote the sum of the decimal digits of 4444^{4444} and let B be the sum of the decimal digits of A. Find the sum of the decimal digits of B.

Exercise 5. Prove that every positive integer has a multiple whose decimal representation includes all ten digits.

Exercise 6. Suppose p is an odd prime. Prove that

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 2^{p}+1 \quad\left(\bmod p^{2}\right)
$$

[Putnam Exam 1991, B-4]

