Assignment 6
Due October 18

Exercise 1. Find all real-valued continuously differentiable functions f defined on the real line such that for all x,

$$
(f(x))^{2}=1990+\int_{0}^{x}\left[(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right] d t .
$$

[Putnam Exam, 1990, B1]

Exercise 2. Evaluate

$$
\int_{0}^{a} \int_{0}^{b} e^{\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}} d x d y
$$

where a and b are positive. [Putnam Exam, 1989, A2]

Exercise 3. Evaluate

$$
\int_{0}^{2 \pi} \frac{d x}{1+e^{\sin x}} d x .
$$

Exercise 4. For what pairs (a, b) of positive real numbers does the improper integral

$$
\int_{b}^{\infty}(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}) d x
$$

converge? [Putnam Exam, 1995, A2]

Exercise 5. Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

[Putnam Exam, 2005, A5].

Exercise 6. For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} f(x) d x$ and $J(x)=$ $\int_{0}^{1} x(f(x))^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f. [Putnam Exam, 2006, B5]

