

Putnam Exam Seminar Fall 2010 Assignment 7 Due October 25

**Exercise 1.** Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$f' = 2f^{2}gh + \frac{1}{gh}, f(0) = 1,$$
  

$$g' = fg^{2}h + \frac{4}{fh}, g(0) = 1,$$
  

$$h' = 3fgh^{2} + \frac{1}{fg}, h(0) = 1.$$

Find an explicit formula for f(x), valid in some open interval around 0. [Putnam Exam, 2009, A-2]

**Exercise 2.** Define polynomials  $f_n(x)$  for  $n \ge 0$  by  $f_0(x) = 1$ ,  $f_n(0) = 0$  for  $n \ge 1$ , and  $\frac{d}{dx}f_{n+1}(x) = (n+1)f_n(x+1)$ 

for  $n \ge 0$ . Find, with proof, the explicit factorization of  $f_{100}(1)$  into powers of distinct primes. [Putnam Exam, 1985, B-2]

**Exercise 3.** Find all differentiable functions  $f: (0, \infty) \to (0, \infty)$  for which there is a positive real number *a* such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0. [Putnam Exam, 2005, B-3]

**Exercise 4.** Let f be a real function on the real line with a continuous third derivative. Prove that there exists a point a such that  $f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \ge 0$ . [Putnam Exam, 1998, A-3]

**Exercise 5.** Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant factor in common with  $x^3 - x$ . Let

$$\frac{d^{1992}}{dx^{1992}} \left(\frac{p(x)}{x^3 - x}\right) = \frac{f(x)}{g(x)}$$

for polynomials f(x) and g(x). Find the smallest possible degree of f(x). [Putnam Exam, 1992, B-4]