Putnam Exam Seminar
Assignment 7
Fall 2010

Exercise 1. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
f^{\prime} & =2 f^{2} g h+\frac{1}{g h}, f(0)=1 \\
g^{\prime} & =f g^{2} h+\frac{4}{f h}, g(0)=1 \\
h^{\prime} & =3 f g h^{2}+\frac{1}{f g}, h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0. [Putnam Exam, 2009, A-2]

Exercise 2. Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes. [Putnam Exam, 1985, B-2]

Exercise 3. Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$. [Putnam Exam, 2005, B-3]

Exercise 4. Let f be a real function on the real line with a continuous third derivative. Prove that there exists a point a such that $f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0$. [Putnam Exam, 1998, A-3]

Exercise 5. Let $p(x)$ be a nonzero polynomial of degree less than 1992 having no nonconstant factor in common with $x^{3}-x$. Let

$$
\frac{d^{1992}}{d x^{1992}}\left(\frac{p(x)}{x^{3}-x}\right)=\frac{f(x)}{g(x)}
$$

for polynomials $f(x)$ and $g(x)$. Find the smallest possible degree of $f(x)$. [Putnam Exam, 1992, B-4]

