Putnam Exam Seminar
Assignment 8 Fall 2010

Exercise 1. Find all pairs of real numbers $(x, y)$ satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right)
\end{aligned}
$$

[Putnam Exam, 2001, B-2]

Exercise 2. Assume that $x, y$ and $z$ are all positive real numbers that satisfy the system of equations

$$
\begin{aligned}
x+y+x y & =8 \\
y+z+y z & =15 \\
z+x+x z & =35
\end{aligned}
$$

Determine the value of $x+y+z+x y z$.

Exercise 3. Find all quadruples of real numbers $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that the sum of any one and the product of the other three is equal to 2 .

Exercise 4. Prove that there are only a finite number of possibilities for the ordered triple $T=(x-y, y-z, z-x)$, where $x, y$ and $z$ are complex numbers satisfying the simultaneous equations

$$
x(x-1)+2 y z=y(y-1)+2 z x=z(z-1)+2 x y,
$$

and list all such triples $T$. [Putnam Exam, 1986, B-2]

Exercise 5. Find all positive integers $n, k_{1}, \ldots k_{n}$ such that

$$
\begin{aligned}
k_{1}+\cdots k_{n} & =5 n-4 \\
\frac{1}{k_{1}}+\cdots \frac{1}{k_{n}} & =1
\end{aligned}
$$

[Putnam Exam, 2005, B-2]

