Exercise 1. Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically? [Putnam Exam, 2003, B1]

Exercise 2. Let n be a positive integer and define

$$
f(n)=1!+2!+3!+\cdots+n!.
$$

Find polynomials $P(x)$ and $Q(x)$ such that

$$
f(n+2)=P(n) f(n+1)+Q(n) f(n)
$$

for all $n \geq 1$.

Exercise 3. Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-1} r, \ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots c_{1} r
$$

are integers. [Putnam Exam, 2004, B1]
Exercise 4. For each integer m, consider the polynomial

$$
P_{m}(x)=x^{4}-(2 m+4) x^{2}+(m-2)^{2} .
$$

For what values of m is $P_{m}(x)$ the product of two nonconstant polynomials with integer coefficients? [Putnam Exam, 2001, A3]

Exercise 5. Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)$ have absolute value 1. [Putnam Exam, 2005, A3]

