Problem 1. A game involves jumping to the right on the real number line. If $a$ and $b$ are real numbers and $b>a$, the cost of jumping from $a$ to $b$ is $b^{3}-a b^{2}$. For what real numbers $c$ can one travel from 0 to 1 in a finite number of jumps with total cost exactly $c$ ? [Putnam Exam, 2009, B2]

Problem 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers $x, y$ and $z$. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers $x$ and $y$. [Putnam Exam, 2008, A1]

Problem 3. Let $f$ be a nonconstant polynomial with positive integer coefficients. Prove that if $n$ is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$. [Putnam Exam, 2007, B1]

Problem 4. Show that the curve $x^{3}+3 x y+y^{3}=1$ contains only one set of three distinct points $A, B$ and $C$ which are the vertices of an equilateral triangle, and find its area. [Putnam Exam, 2006, B1]

Problem 5. Define a function $f$ on the real numbers by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational, } \\ 1 / q & \text { if } x=p / q \text { with } p \in \mathbb{Z}, q \in \mathbb{N}, \operatorname{gcd}(p, q)=1\end{cases}
$$

Determine the set of points on which $f$ is continuous.

Problem 6. Define a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{0}=u_{1}=u_{2}=1$, and thereafter by the condition that

$$
\operatorname{det}\left(\begin{array}{cc}
u_{n} & u_{n+1} \\
u_{n+2} & u_{n+3}
\end{array}\right)=n!
$$

for all $n \geq 0$. Show that $u_{n}$ is an integer for all $n$. (By convention, 0 ! $=1$.) [Putnam Exam, 2004, A3]

