Putnam Exam Seminar

Problem 1. Find the unique function $u(t)$ so that

$$
u^{\prime}(t)=u(t)+\int_{0}^{1} u(s) d s
$$

and $u(0)=1$. [Putnam Exam, 1958, 3]

Problem 2. If

$$
\begin{aligned}
& u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\cdots \\
& v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\cdots \\
& w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots
\end{aligned}
$$

then prove that

$$
u^{3}+v^{3}+w^{3}-3 u v w=1 .
$$

[Putnam Exam, 1939, 14]

Problem 3. For all real x, the real-valued function $y=f(x)$ satisfies

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} .
$$

(a) If $f(x)>0$ for all real x, must $f^{\prime}(x)>0$ for all real x ? Explain.
(b) If $f^{\prime}(x)>0$ for all real x, must $f(x)>0$ for all real x ? Explain.
[Putnam Exam, 1987, A-3]

Problem 4. A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$ determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b). [Putnam Exam, 1988, A-2]

