Problem 1. Find all ordered pairs of real numbers (x, y) which satisfy the system of equations

$$
\begin{aligned}
\sqrt{x}+\sqrt{y} & =3 \\
3 x+2 y & =14 .
\end{aligned}
$$

Problem 2. Curves A, B, C and D are defined in the plane as follows:

$$
\begin{aligned}
& A=\left\{(x, y): x^{2}-y^{2}=\frac{x}{x^{2}+y^{2}}\right\} \\
& B=\left\{(x, y): 2 x y+\frac{y}{x^{2}+y^{2}}=3\right\} \\
& C=\left\{(x, y): x^{3}-3 x y^{2}+3 y=1\right\}, \\
& D=\left\{(x, y): 3 x^{2} y-3 x-y^{3}=0\right\} .
\end{aligned}
$$

Prove that $A \cap B=C \cap D$. [Putnam Exam, 1987, A-1]

Problem 3. Show that there is a unique pair of real numbers (x, y) that satisfy the equation

$$
\left(4 x^{2}+6 x+4\right)\left(4 y^{2}-12 y+25\right)=28 .
$$

Problem 4. Find all values of α for which the curves $y=\alpha x^{2}+\alpha x+\frac{1}{24}$ and $x=\alpha y^{2}+\alpha y+\frac{1}{24}$ are tangent to each other. [Putnam Exam, 2007, A-1]

