

Putnam Exam Seminar Fall 2010 Quiz 7 November 1

Problem 1. Suppose p(x) is a polynomial of degree seven such that $(x - 1)^4$ is a factor of p(x) + 1 and $(x + 1)^4$ is a factor of p(x) - 1. Find p(x).

Problem 2. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^k - 1}$ has the form $\frac{P_n(x)}{(x^k - 1)^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$. [Putnam Exam, 2002, A1]

Problem 3. Consider all lines which meet the graph of

$$y = 2x^4 + 7x^3 + 3x - 5$$

in four different points, sat (x_i, y_i) for i = 1, 2, 3, 4. Show that $\frac{x_1 + x_2 + x_3 + x_4}{4}$ is independent of the line and find its value.

Problem 4. Let k be the smallest positive integer with the property that there are distinct integers m_1, m_2, m_3, m_4, m_5 such that the polynomial

$$p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$$

has exactly k nonzero coefficients. Find, with proof, a set of integers m_1, m_2, m_3, m_4, m_5 for which this minimum k is achieved. [Putnam Exam, 1985, B1]

Problem 5. Find a nonzero polynomial P(x, y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers *a*. (*Note:* $\lfloor \nu \rfloor$ is the greatest integer less than or equal to ν .) [Putnam Exam, 2005, B1]