Problem 1. Suppose $p(x)$ is a polynomial of degree seven such that $(x-1)^{4}$ is a factor of $p(x)+1$ and $(x+1)^{4}$ is a factor of $p(x)-1$. Find $p(x)$.

Problem 2. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$. [Putnam Exam, 2002, A1]

Problem 3. Consider all lines which meet the graph of

$$
y=2 x^{4}+7 x^{3}+3 x-5
$$

in four different points, sat $\left(x_{i}, y_{i}\right)$ for $i=1,2,3,4$. Show that $\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}$ is independent of the line and find its value.

Problem 4. Let k be the smallest positive integer with the property that there are distinct integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ such that the polynomial

$$
p(x)=\left(x-m_{1}\right)\left(x-m_{2}\right)\left(x-m_{3}\right)\left(x-m_{4}\right)\left(x-m_{5}\right)
$$

has exactly k nonzero coefficients. Find, with proof, a set of integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ for which this minimum k is achieved. [Putnam Exam, 1985, B1]

Problem 5. Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor\nu\rfloor$ is the greatest integer less than or equal to ν.) [Putnam Exam, 2005, B1]

