Math 1311 Fall 2006

Calculus I

Final Exam - Practice Problems

Problem 1. Use Riemann sums to compute

$$
\int_{0}^{2} 2-\frac{2 x}{3} d x .
$$

Use the Fundamental Theorem of Calculus to check your answer.
Problem 2. Let $f(x)$ be the function whose graph is shown below.

$$
g(x)=\int_{1}^{x} f(t) d t
$$

where the function $f(x)$ has the graph shown below.
(a) If

$$
g(x)=\int_{1}^{x} f(t) d t
$$

compute $g(0), g(1), g(2)$ and $g(3)$.
(b) Compute the average value of $f(x)$ on the interval $[0,3]$.

Problem 3. Make the substitution $u=r-3$ in the definite integral

$$
\int_{2}^{4} r \sqrt{1-(r-3)^{2}} d r
$$

then evaluate the resulting definite integral using geometry.
Problem 4. Evaluate the following indefinite integrals.
(a)

$$
\int\left(x^{2}+2 x+1\right)^{9}(x+1) d x
$$

(b)

$$
\int \tan y d y
$$

(c)

$$
\int \sqrt{x}(1+\sqrt{x})^{20} d x
$$

Problem 5. The driver of a car traveling in a straight line slams on its brakes at time $t=0$. If the car experiences a constant deceleration of $40 \mathrm{ft} / \mathrm{s}^{2}$ and skids 180 ft before coming to a stop, how fast was the car traveling when the brakes were first applied?

Problem 6. Find the derivative of the function

$$
G(x)=\int_{-x^{2}}^{x} \sqrt{t^{2}-2 t+2} d t
$$

Problem 7. Use the fundamental theorem of calculus to find a continuous function $g(x)$ which satisfies the equation

$$
x+\sin x=\int_{0}^{x}(g(t))^{2} d t
$$

Problem 8. Evaluate

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2-\left(\frac{i}{n}\right)^{5}\right) \frac{1}{n}
$$

by interpreting the limit as a definite integral.
Problem 9. Evaluate the following definite integrals.
(a)

$$
\int_{0}^{1} \frac{d t}{3-2 t}
$$

(b)

$$
\int_{0}^{2}\left(1-x^{2}\right)^{2} d x
$$

(c)

$$
\int_{-1}^{1} e^{3 x}\left(1-e^{3 x}\right)^{4} d x
$$

(d)

$$
\int_{0}^{\pi / 4} \sec ^{2} \theta d \theta
$$

Problem 10.

(a) Show that

$$
\frac{d}{d x}(x \ln x-x)=\ln x .
$$

(b) Use the result of part (a) to compute

$$
\int_{1}^{e^{5}} \ln x d x
$$

Problem 11. Find the area of the region bounded by the curves $y=\sin x, y=\cos x, x=0$ and $x=\pi$.

Problem 12. Evaluate

$$
\sum_{k=1}^{100}\left(\frac{1}{k}-\frac{1}{k+1}\right)
$$

[Hint: Write out the first few terms of the sum.]
Problem 13. Find the area trapped between the curves $y=x^{3 / 2}$ and $y=2-x^{2}$.
Problem 14. Set up, but do not evaluate, the integral giving the arc length for one arch of the curve $y=\sin x$.

Problem 15. Carefully state both parts of the Fundamental Theorem of Calculus. Use the second part of the theorem to prove the first.

Problem 16. Use definite integrals to find a function $f(x)$ satisfying

$$
f^{\prime}(x)=\frac{1}{\ln x}, f(2)=0 .
$$

Problem 17. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \frac{\sin t}{t} d t}{x} .
$$

[Hint: Use L'Hospital's rule and the Fundamental Theorem of Calculus.]
Problem 18. Consider a rectangle inscribed in the first-quadrant region that lies between the x-axis and the line $y=10-x$, as shown in the figure below. Express this area as a function $A(x)$ of the x-coordinate of its vertex P on the line. Find the maximum and average values of $A(x)$.

Problem 19. Let

$$
f(x)=\int_{2}^{x} \frac{t}{t^{2}+1} d t
$$

(a) Compute $f^{\prime}(x)$ by finding a closed form expression for $f(x)$ and differentiating.
(b) Verify your computation in part (a) by differentiating $f(x)$ directly using the Fundamental Theorem of Calculus.

Problem 20. The figure below shows the graph of the function $f(x)=x \sin x$ on the interval [$0,4 \pi]$. Let

$$
g(x)=\int_{0}^{x} f(t) d t
$$

(a) Find the values of x at which $g(x)$ has local maximum and minimum values on $[0,4 \pi]$.
(b) Where does $g(x)$ attain its global maximum and minimum values on $[0,4 \pi]$?
(c) Which points on the graph $y=f(x)$ correspond to inflection points on the graph of $y=g(x)$?
(d) Sketch a rough graph of $y=g(x)$.

