

 $\begin{array}{c} Calculus \ I \\ Fall \ 2009 \end{array}$

EXAM 1 PRACTICE PROBLEMS

Exercise 1. Find a formula for a function f whose graph passes through (0,0), has vertical asymptotes x = -1 and x = 2 and has horizontal asymptote y = -3.

Exercise 2. Find the limit.

a.
$$\lim_{t \to -3} \frac{t^2 - 9}{t^2 + 2t - 3}$$
b.
$$\lim_{x \to 4} \frac{x - \sqrt{2x + 8}}{x^3 - 4x^2}$$
c.
$$\lim_{x \to \infty} \sqrt{x^2 + x + 1} - \sqrt{x^2 - x}$$
d.
$$\lim_{w \to -\infty} \frac{\sqrt{w^2 - 9}}{2w - 6}$$
e.
$$\lim_{z \to 1} \left(\frac{1}{z - 1} + \frac{1}{z^2 - 3z + 2} \right)$$
f.
$$\lim_{\theta \to 0} \frac{\theta^2}{\cos \theta - 1}$$
g.
$$\lim_{x \to 0^+} e^{1/x}$$
h.
$$\lim_{x \to 0^-} e^{1/x}$$

Exercise 3. Show that the polynomial $p(x) = x^3 - 4x + 1$ has three real roots. [*Hint:* Show that p(x) has at least 3 sign changes and use the Intermediate Value Theorem]

Exercise 4. Differentiate $f(x) = \frac{1}{\sqrt{x+2}}$ using the definition of the derivative.

Exercise 5. Find the parabola with equation $y = ax^2 + bx$ whose tangent line at (1, 1) has the equation -3x + y = -2.

Exercise 6. Find constants a and b so that the function

$$r(x) = \begin{cases} -3x + 2 & \text{if } x \le -1, \\ x^2 + ax + b & \text{if } x > -1 \end{cases}$$

is differentiable everywhere.

Exercise 7. Evaluate the limit

$$\lim_{h \to 0} \frac{(1+h)^{1000} - 1}{h}.$$

Exercise 8. Find $\frac{dy}{dx}$.	
a. $y = \sqrt{x} \cos \sqrt{x}$	b. $y = \ln (x^3 - 7x + 3)$
c. $y = \frac{e^x}{x^2 + 1}$	d. $y = x ^3$
$\mathbf{e.} \tan\left(e^{-x^2}\right)$	$f. y = e^{\alpha x} \sin \beta x$
g. $xy^4 + x^2y = x + 3y$	h. $y = \frac{\sqrt{x+1}(2-x)^5}{(x+3)^7}$

Exercise 9. Show that the triangle formed by the coordinates axes and the tangent line to the curve xy = 1 at the point (a, 1/a) always has an area equal to 2.

Exercise 10. Suppose that h(x) = f(x)g(x) and F(x) = f(g(x)), where f(2) = 3, g(2) = 5, g'(2) = 4, f'(2) = -2 and f'(5) = 11. Find h'(2) and F'(2).