Exercise 1. Find a formula for a function f whose graph passes through $(0,0)$, has vertical asymptotes $x=-1$ and $x=2$ and has horizontal asymptote $y=-3$.

Exercise 2. Find the limit.
a. $\lim _{t \rightarrow-3} \frac{t^{2}-9}{t^{2}+2 t-3}$
b. $\lim _{x \rightarrow 4} \frac{x-\sqrt{2 x+8}}{x^{3}-4 x^{2}}$
c. $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}$
d. $\lim _{w \rightarrow-\infty} \frac{\sqrt{w^{2}-9}}{2 w-6}$
e. $\lim _{z \rightarrow 1}\left(\frac{1}{z-1}+\frac{1}{z^{2}-3 z+2}\right)$
f. $\lim _{\theta \rightarrow 0} \frac{\theta^{2}}{\cos \theta-1}$
g. $\lim _{x \rightarrow 0^{+}} e^{1 / x}$
h. $\lim _{x \rightarrow 0^{-}} e^{1 / x}$

Exercise 3. Show that the polynomial $p(x)=x^{3}-4 x+1$ has three real roots. [Hint: Show that $p(x)$ has at least 3 sign changes and use the Intermediate Value Theorem]

Exercise 4. Differentiate $f(x)=\frac{1}{\sqrt{x+2}}$ using the definition of the derivative.

Exercise 5. Find the parabola with equation $y=a x^{2}+b x$ whose tangent line at $(1,1)$ has the equation $-3 x+y=-2$.

Exercise 6. Find constants a and b so that the function

$$
r(x)= \begin{cases}-3 x+2 & \text { if } x \leq-1 \\ x^{2}+a x+b & \text { if } x>-1\end{cases}
$$

is differentiable everywhere.

Exercise 7. Evaluate the limit

$$
\lim _{h \rightarrow 0} \frac{(1+h)^{1000}-1}{h} .
$$

Exercise 8. Find $\frac{d y}{d x}$.
a. $\mathrm{y}=\sqrt{x} \cos \sqrt{x}$
b. $\quad y=\ln \left(x^{3}-7 x+3\right)$
c. $y=\frac{e^{x}}{x^{2}+1}$
d. $y=|x|^{3}$
e. $\tan \left(e^{-x^{2}}\right)$
f. $y=e^{\alpha x} \sin \beta x$
g. $\quad x y^{4}+x^{2} y=x+3 y$
h. $y=\frac{\sqrt{x+1}(2-x)^{5}}{(x+3)^{7}}$

Exercise 9. Show that the triangle formed by the coordinates axes and the tangent line to the curve $x y=1$ at the point $(a, 1 / a)$ always has an area equal to 2 .

Exercise 10. Suppose that $h(x)=f(x) g(x)$ and $F(x)=f(g(x))$, where $f(2)=3, g(2)=5$, $g^{\prime}(2)=4, f^{\prime}(2)=-2$ and $f^{\prime}(5)=11$. Find $h^{\prime}(2)$ and $F^{\prime}(2)$.

