D

 $\begin{array}{c} {\rm Calculus} \ {\rm I} \\ {\rm Fall} \ 2009 \end{array}$

Exam 2 Practice Problems

Exercise 1. A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level?

Exercise 2. Estimate the following quantities.

- **a.** $\sqrt[3]{0.95}$
- **b.** $\cos 44^{\circ}$

Exercise 3. Find the absolute maximum and minimum values of f on the given interval.

a. $f(t) = 2\cos t + \sin 2t$, $[0, \pi/2]$ b. $f(x) = x\sqrt{x - x^2}$, [0, 1]c. $f(x) = x^5 - x^3 + 2$, [-1, 1]

Exercise 4. Is there a differentiable function f such that f(0) = -1, f(2) = 4 and $f'(x) \le 2$ for all x?

Exercise 5. Show that the equation $x^3 - 4x + 1 = 0$ has exactly three real solutions.

Exercise 6. Sketch the following curves, indicating all local or absolute maxima and minima, inflection points and asymptotes.

a.
$$y = \sqrt[3]{x^2 - 1}$$
 b. $y = \frac{1}{1 + e^{-x}}$ **c.** $y = 1 + \frac{1}{x} + \frac{1}{x^2}$

Exercise 7. Evaluate the limit.

a.
$$\lim_{x \to 0} \frac{e^{4x} - 1 - 4x}{x^2}$$
 b. $\lim_{x \to 1^+} \left(\frac{x}{x - 1} - \frac{1}{\ln x}\right)$ **c.** $\lim_{x \to \pi/2^+} (\tan x)^{\cos x}$