

 $\begin{array}{c} {\rm Calculus} \ {\rm I} \\ {\rm Fall} \ 2009 \end{array}$

EXAM 3 PRACTICE PROBLEMS

Exercise 1. A fence 8 ft tall runs parallel to a tall building at a distance of 4 ft from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?

Exercise 2. A box with a square base and open top is to be made using exactly 1200 cm² of material. What is the largest possible volume of such a box?

Exercise 3. A driver involved in an accident claims he was going only 25 mi/h. When investigators tested his car, they found that the maximum deceleration its brakes could provide was 15 ft/s². Given that the skid marks left by the car at the scene of the accident were 210 ft long, is the driver telling the truth?

Exercise 4. For the function f(x), whose graph is shown below, define

$$g(x) = \int_0^x f(t) dt.$$

- **a.** At what values of x do the local maximum and minimum values of g occur?
- **b.** Find the absolute maximum and minimum values of g on the interval [0,7].

- **c.** Find the intervals on which q is concave up and concave down.
- **d.** Carefully sketch the graph of g.

Exercise 5. Evaluate the limit

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i\sqrt{1 + i^2/n^2}}{n^2}.$$

[Hint: Express the limit as a definite integral.]

Exercise 6. If f is a continuous function such that

$$\int_0^x f(t) dt = xe^{2x} + \int_0^x e^{-t} f(t) dt$$

for all x, find an explicit formula for f(x). [Hint: Apply the Fundamental Theorem of Calculus to get rid of the integrals.]

Exercise 7. Evaluate the integral.

a.
$$\int_{1}^{9} \frac{\sqrt{u} - 2u^2}{u} du$$

b.
$$\int_0^1 \sin(3\pi t) dt$$

$$\mathbf{c.} \int \frac{x^2}{\sqrt{x-3}} \, dx$$

$$\mathbf{d.} \int_{1}^{10} \frac{x}{x^2 - 4} \, dx$$

e.
$$\int \frac{\cos(\ln x) - \sin(\ln x)}{x} \, dx$$

$$\mathbf{f.} \int_0^{\pi/4} (1 + \tan \theta)^3 \sec^2 \theta \, d\theta$$

$$\mathbf{g.} \int_0^1 \frac{e^z + 1}{e^z + z} \, dz$$

h.
$$\int_0^4 |\sqrt{x} - 1| \ dx$$

Exercise 8. Find the area of the region bounded by the given curves.

a.
$$y = \sin(\pi x/2), y = x^2 - 2x$$

b.
$$y = \sqrt[n]{x}, y = 2x - 1, y = 0 \ (n > 1)$$

c.
$$y = x^2 - 4$$
, $y = x^3 - 4x$

Exercise 9. Find the volume of the solid whose base is the region enclosed by the parabola $y = 1-x^2$ and the x-axis, and whose cross-sections perpendicular to the y-axis are semicircles.

Exercise 10. Find the volume of the "cap" of a sphere with radius r and height h (see the diagram below).

