

 $\begin{array}{c} {\rm Calculus} \ {\rm I} \\ {\rm Fall} \ 2009 \end{array}$

FINAL EXAM PRACTICE PROBLEMS 2

Exercise 1. Evaluate the integral.

a.
$$\int_{1}^{9} \frac{\sqrt{u} - 2u^{2}}{u} du$$
 b. $\int_{0}^{1} y(y^{2} + 1)^{5} dy$ **c.** $\int \left(\frac{1 - x}{x}\right)^{2} dx$
d. $\int \frac{\csc^{2} x}{1 + \cot x} dx$ **e.** $\int_{0}^{1} \frac{x}{1 + x^{4}} dx$ **f.** $\int_{0}^{3} |x^{2} - 4| dx$

Exercise 2. Find the derivative of $y = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt$.

Exercise 3. Find $\lim_{h\to 0} \frac{1}{h} \int_2^{2+h} \sqrt{1+t^3} dt$. [*Hint:* The answer is 3.]

Exercise 4. Determine the interval [a, b] for which the integral $\int_{a}^{b} (2 + x - x^2) dx$ is as large as possible.

Exercise 5. The region between the curves y = x and $y = x^2$ is rotated about the line x = -1. Find the volume of the resulting solid using:

- a. Cavalieri's Principle;
- **b.** The shell method.

Exercise 6. The figure below shows a horizontal line y = c intersecting the curve $y = 8x - 27x^3$. Find the number c such that the areas of the shaded regions are equal.

