1. If the hour and minute hands of a clock are 3 and 4 inches long, respectively, how quickly are the tips of the hands moving toward each other at 3 pm ?
2. A cone shaped drinking cup is made from a disk of paper by cutting a sector from the disk and connecting the edges of the cut. If the disk has radius 4 inches, what is the maximum possible volume of the cup?

3. Find the equation of the line with slope -1 that is tangent to the curve $x^{3}+y^{3}=9 x y$.
4. Suppose that f is a differentiable function with $f(2)=5$ and $f^{\prime}(x) \leq 3$ for all x. Show that $f(x) \leq 3 x-1$ for all $x \geq 2$. [Hint: Use the Mean Value Theorem.]
5. Compute $\frac{d y}{d x}$.
(a) $y=(\cos x)^{\sin x}$
(b) $y=(\tan x)^{2} e^{x^{2}+3-4}$
(c) $\quad x^{2} y^{2}=x+y$
(d) $\quad y=\ln \left(x+e^{-x}\right)$
6. At noon, ship A is 90 km west of ship B. Ship A is sailing east at $30 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $20 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 2 PM ?

7.

(a) Find the linear approximation $L(x)$ to the function

$$
f(x)=(1+x)^{100}
$$

near the point $a=0$.
(b) Use part (a) to estimate 1.001^{100}.
8. An open-topped cylindrical pot is to have volume 125 in. ${ }^{3}$ What dimensions will minimize the total amount of material used in making this pot?
9. Find and classify the critical points of the following functions.
(a) $f(x)=x^{3}+x^{2}-5 x+3$
(b) $g(x)=x \sqrt[3]{4-x}$
10. Find the intervals of increase and decrease for the function $h(x)=x\left(x^{2}+x-2\right)^{2}$.

