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Consider the second order differential equation

ay′′ + by′ + cy = 0 (1)

where a, b, c are real constants and a 6= 0. By a solution to (1) we mean a function y = f(x) defined
everywhere on the real line that is twice differentiable and whose derivatives satisfy the relationship specified
by (1). In order to find the most general solution (i.e. complete list of solutions) to this differential equation,
we introduced the characteristic equation

ar2 + br + c = 0 (2)

and found that by analyzing its solutions we could produce all of the solutions to (1), thereby reducing an
apparently complicated calculus problem to a rather simple algebraic computation. A bit more specifically,
we used the solutions to (2) to write down two linearly independent functions y1 and y2 that we then verified
directly were solutions to (1). To produce every solution from these two we made an appeal to the following
“deep” result.

Theorem 1. If y1 and y2 are linearly independent solutions to (1) then every function of the form

y = c1y1 + c2y2,

where c1 and c2 are any real numbers, is also a solution. Moreover, every solution of (1) has this form.

We call this result “deep” because its proof is beyond the scope of our class. While the theorem very
conveniently provides us with a way of extracting a complete list of solutions from only two of them, it may
seem somewhat unsatisfactory to rely on a result whose demonstration is beyond our reach.

The goal of this note is to bridge this gap in our knowledge. We won’t prove Theorem 1, but we will
prove the next result, which while not as general, still provides us with all of the solutions to (1).

Theorem 2. If the characteristic equation (2) has two distinct real roots r1 and r2 then the general solution
to (1) is given by

y = c1e
r1x + c2e

r2x (3)

where c1 and c2 are arbitrary constants. If the characteristic equation (2) has only a single (repeated) real
root r then the general solution to (1) is given by

y = (c1x+ c2)erx (4)

where c1 and c2 are arbitrary constants. And if the characteristic equation (2) has nonreal (complex) roots
α± βi then the general solution to (1) is given by

y = eαx(c1 cosβx+ c2 sinβx) (5)

where c1 and c2 are arbitrary constants.

Proof. It is easy (but perhaps a bit tedious) to check that the functions given in (3) to (5) do, indeed, yield
solutions to (1) in each case. The question is: are these the only solutions? We show in every case that they
are.



We can deal with the first two cases simultaneously. Suppose that y is a solution to (1) and that r1 is a
real root of (2). Define a new function u by

u = ay′ + (ar1 + b)y. (6)

Since y and y′ are differentiable so is u, and in fact

u′ = ay′′ + (ar1 + b)y′.

Therefore

u′ − r1u = ay′′ + (ar1 + b)y′ − r1ay′ − r1(ar1 + b)y
= ay′′ + by′ − (ar21 + br1)y.

However, we know that ar21 + br1 + c = 0 so that ar21 + br1 = −c. That is

u′ − r1u = ay′′ + by′ − (ar21 + br1)y = ay′′ + by′ + cy = 0.

Therefore, u is a solution to the first order linear differential equation u′ − r1u = 0! Solving this using our
earlier techniques we find that we must have u = C1e

r1x for some constant C1. If we put this back into (6)
we find that

ay′ + (ar1 + b)y = C1e
r1x

which is another first order linear equation, this time in y! Dividing by a (which we know to be nonzero) it
becomes

y′ +
(
r1 +

b

a

)
y = C2e

r1x (7)

where C2 = C1/a.
If r2 is the other root of ar2 + br+ c = 0 (which may, in fact, equal r1), then the polynomial ax2 + bx+ c

must factor as a(x− r1)(x− r2). If we multiply out the latter polynomial and compare its x coefficient with
the first, we find that b = −a(r1 + r2), or −r2 = r1 + b/a.1 So we can rewrite (7) as

y′ − r2y = C2e
r1x.

Using the integrating factor e−r2x and solving we find that y must be given by

y = C2e
r2x

∫
e(r1−r2)x dx.

There are now two cases. If r1 6= r2 (i.e. the characteristic equation has two distinct real solutions) then
r1 − r2 6= 0 and so we have ∫

e(r1−r2)x dx =
e(r1−r2)x

r1 − r2
+ C3 (8)

which means that

y = C2e
r2x

(
e(r1−r2)x

r1 − r2
+ C3

)
= C4e

r1x + C3e
r2x,

where we have set C4 = C2/(r1 − r2). Up to the names of the constants (which are arbitrary anyway), this
is exactly what we needed! But what if r1 = r2 so that (8) isn’t valid? In this case we have

y = C2e
r2x

∫
e(r1−r2)x dx = C2e

r1x

∫
dx = C2e

r1x(x+ C3) = (C2x+ C4)er1x,

with C4 = C2C3, which gives us what we expected in this case, too.
Now let’s move on to the third case, in which the characteristic equation (2) has nonreal roots α±βi. Since

we’re after real-valued solutions in a situation which more naturally calls for complex numbers, things are a bit
1This can also be seen directly by appealing to the quadratic formula, which expresses r1 and r2 in terms of a, b and c.



more complicated. The first thing we need is a relationship between α, β and the coefficients of (2). As above,
knowing the roots of a polynomial allows us to factor it, so that ax2 +bx+c = a(x−(α+βi))(x−(α−βi)) =
a(x2 − 2αx+ (α2 + β2)). Comparing coefficients in these expressions tells us that we must have

b = −2aα (9)
c = a(α2 + β2). (10)

We’ll need these relationships shortly.
Now assume that y is a solution to (1). We’re going to perform a series of changes of variables to get (1)

into a friendlier form. We first set
u = e−αxy. (11)

Differentiating twice yields
u′′ = e−αx

(
y′′ − 2αy′ + α2y

)
so that

au′′ + β2au = e−αx
(
ay′′ − 2aαy′ + a(α2 + β2)y

)
= e−αx (ay′′ + by′ + cy)
= 0

where we have used (9), (10) and the fact that y solves (1). If we divide both sides of this equation by a,
which we know to be nonzero, we obtain the simple linear equation

u′′ + β2u = 0. (12)

At this point it’s worth remembering that our independent variable has been assumed to be x. We now
make the substitution t = βx. According to the chain rule

u′ =
du

dx
=
du

dt

dt

dx
= β

du

dt

u′′ =
d2u

dx
=

d

dx

du

dx
=

d

dx

(
β
du

dt

)
= β

d2u

dt2
dt

dx
= β2 d

2u

dt2
.

Therefore (12) becomes

β2 d
2u

dt2
+ β2u = 0.

Since we know α + βi is definitely not real it must be that β 6= 0. We can thus divide both sides of the
equation above by β2 which tells us that

d2u

dt2
+ u = 0. (13)

To solve (13) for u we perform one final substitution, letting

w =
du

dt
+ (tan t)u. (14)

Because tan t is only defined on intervals of the form In = (nπ − π/2, nπ + π/2), where n is an integer, w is
only defined on these intervals. So, from this point on let’s assume that our t domain is a single In. We find
that

dw

dt
− (tan t)w =

d2u

dt2
+ (sec2 t)u+ tan t

du

dt
− tan t

du

dt
− (tan2 t)u

=
d2u

dt2
+ (sec2 t− tan2 t)u

=
d2u

dt2
+ u

= 0.



That is, w satisfies the linear equation dw/dt − (tan t)w = 0, which is solved easily using the integrating
factor cos t. In fact

w = C1 sec t (15)

for some constant C1. Referring back to (14), this means that

du

dt
+ (tan t)u = C1 sec t,

which is once again linear. The integrating factor sec t allows us to finally obtain

u = C1 sin t+ C2 cos t

for some constant C2.
At this point the back substitutions t = βx and y = eαxu tell us immediately that

y = eαx (C2 cosβx+ C1 sinβx) , (16)

and we’re finished. Well, not quite. There’s still one technical point we need to address. When we defined
w in the previous paragraph we had to assume that its independent variable t was restricted to the interval
In. This means that the expression for y in (16) is only valid on these intervals, and that in principle the
constants C1 and C2 might vary as we vary n. However, u and du/dt are continuous (since they are both
differentiable), and we can take limits at the endpoints of each interval to find that the constants match
everywhere. For example, if we have

u = A1 cos t+B1 sin t for t ∈ I0
u = A2 cos t+B2 sin t for t ∈ I1

then
B1 = lim

t→π/2−
(A1 cos t+B1 sin t) = u

(π
2

)
= lim
t→π/2+

(A2 cos t+B2 sin t) = B2

and a similar computation with du/dt gives A1 = A2. The general case is left to the reader. This completes
the proof of the third case.

The method of proof we’ve just employed actually still works (in principle) if we modify (1) so that it is
no longer homogeneous. That is, if we replace (1) with

ay′′ + by′ + cy = G(x)

where G(x) is nonzero, the substitution u = ay′ + (ar1 + b)y of the proof (in the case of real roots) yields
the first order differential equation

u′ − r1u = G(x)

for u, which is simply the inhomogeneous version of u′ − r1u = 0. This equation is still linear, and if we
solve it we can back substitute into u = ay′ + (ar1 + b)y and solve for y. The reader is encouraged to give
this a try in the cases where G(x) is a constant or an exponential function.


