Problems 1 through 12: evaluate the indefinite integral.

1.
$$\int \sqrt{9x^2-6x+2} \, dx$$

2.
$$\int y \arctan y \, dy$$

$$3. \int \frac{x-1}{25x^2 - 20x + 13} \, dx$$

4.
$$\int \frac{\sqrt{1-3w^2}}{w} dw$$

5.
$$\int \frac{1}{\sqrt{e^{2x}-1}} dx$$
 $(x>0)$

6.
$$\int \frac{2x^4 + 2x^3 - 6x^2 + 3x + 6}{(x+1)(x^2 - 4)} dx$$

7.
$$\int \ln(x^2 + 4) \, dx$$

8.
$$\int \frac{1}{(u^2+5)^2} du$$

9.
$$\int \theta^2 \sin 5\theta^3 d\theta$$

10.
$$\int \frac{1}{t^3\sqrt{t^2-6}} dt$$
 $(t > \sqrt{6})$

11.
$$\int \frac{1}{x^4 - x^3} dx$$

$$12. \int \sin^{\frac{4}{3}} \phi \cos^3 \phi \, d\phi$$

13. The base of a certain solid is the region in the xy-plane bounded by $y = \sin x$, $y = \cos x$, $x = \pi/4$ and $x = 5\pi/4$. If the cross sections of this solid perpendicular to the x-axis are equilateral triangles with *their* bases in the xy-plane, determine the volume of the solid.

14. A bowl-shaped solid is obtained by rotating the bounded region between the curves $y = x^2$ and $4y = 3x^2 + 4$ about the y-axis. Find the volume of this solid.

15. Find the area of the surface obtained by rotating the portion of the curve $y = \ln x$ between x = -1/2 and x = 2 about the y-axis.