1.Evaluate the limit

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}+1}
$$

2. Find the limit of the sequence

$$
\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots\}
$$

3. Let $\left\{F_{n}\right\}$ denote the Fibonacci sequence, which is defined by $F_{1}=F_{2}=1$ and $F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 3$. That is, the next term in the Fibonacci sequence is the sum of the preceding two terms:

$$
\left\{F_{n}\right\}=\{1,1,2,3,5,8,13,21,34,55,89, \ldots\}
$$

Show that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{F_{n}}
$$

converges absolutely. [Hint: $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}=(1+\sqrt{5}) / 2$.]
4. Find a power series representation for the function

$$
f(x)=\frac{1}{3-x}
$$

in powers of $x+3$. Be sure to state where (for what values of x) this representation is valid.
5. Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

a. Show that the series has radius of convergence 1 and determine the interval of convergence.
b. Show that

$$
f^{\prime}(x)=\frac{1}{1-x}
$$

for all $|x|<1$.
c. Use part (b) to conclude that

$$
f(x)=\ln (1-x)
$$

for $|x|<1$.
d. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}
$$

6. Use the integral test to show that the p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

converges when $p>1$.
7. The terms of the series

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

are defined recursively by the equation

$$
a_{1}=2 a_{n+1}=\frac{5 n+1}{4 n+3} a_{n} .
$$

Determine whether the series converges or diverges.
8. Determine the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(x+5)^{n}}{(n+1) n!}
$$

