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Consider the second order differential equation

ay′′ + by′ + cy = 0 (1)

where a, b, c are real constants and a 6= 0. In our course (and indeed in every course involving equations
of this type that I have ever taught) the general solution to (1) is “found” as follows. One first defines the
characteristic equation of (1) to be

ar2 + br + c = 0 (2)

and then easily verifies that if r is a real root of the characteristic equation then y = erx is a solution
to (1) (see the course text or lecture notes). Then, using certain theorems on general second order linear
differential equations, one concludes that the general solution to (1) can be constructed from these exponential
solutions. While this approach may be perfectly satisfactory to the seasoned mathematician, the invocation of
mysterious theorems whose proofs are “too difficult to present here” may leave the average student somewhat
frustrated. It is the goal, therefore, of this note to show that it is possible, in an elementary way, to solve
(1) directly, i.e. produce the general solution using nothing more than standard results from Calculus. In
fact, we will prove the following result.

Theorem 1. If the characteristic equation (2) has two distinct real roots r and r̃ then the general solution
to (1) is given by

y = c1e
rx + c2e

r̃x (3)

where c1 and c2 are arbitrary constants. If the characteristic equation (2) has only a single (repeated) real
root r then the general solution to (1) is given by

y = c1xerx + c2e
rx (4)

where c1 and c2 are arbitrary constants.

Proof. It is easy to check (again, see the course text or lecture notes) that the given functions do, indeed,
yield solutions to (1) in each case. The question is: are these the only solutions? We show that they are.

Suppose that y(x) is a function that is twice differentiable at every point of the real line and that satisfies
(1), i.e. that y(x) is a solution to (1). Let r be a real root of (2). Assuming that r 6= 0 (we will deal with
the case r = 0 later), we can write (1) in the form(
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Notice that since ar2 + br + c = 0 we have
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so that (5) is the same as
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This shows that u = ay′ − cy/r is a solution to the first order equation

du

dx
= ru.

Since the solutions to this equation are all of the form u = c1e
rx, we conclude that

ay′ − c

r
y = c1e

rx

for some constant c1. Since a 6= 0 we can divide by it and rewrite this last result as
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(as usual, since c1 is an unspecified constant, we replace c1/a with c1 again). We now reflect on the constant
c/ar appearing here. Using the quadratic formula we have
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so that
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which is just r̃, the other root of the characteristic equation (2). So now we must solve

dy
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− r̃y = c1e

rx (6)

which is just a first order linear equation! As usual, we can solve this equation by multiplying by the factor
ρ(x) = e−r̃x and integrating. This yields

e−r̃x dy
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− r̃e−r̃xy = c1e

(r−r̃)x

or
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)
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If r 6= r̃ (i.e. the characteristic equation (2) has two distinct real roots) then integrating yields

e−r̃xy = c1e
(r−r̃)x + c2

(here, as above, we have rewritten c1/(r − r̃) as c1 again) or

y = c1e
rx + c2e

r̃x

which is the desired solution (3). If r = r̃ (i.e. the characteristic equation (2) has a single, repeated, root)
then the right hand side of (7) is just c1 and integrating gives

e−r̃xy = c1x + c2



or, since r = r̃,
y = c1xerx + c2e

rx

which is exactly (4).
Finally we address the case r = 0. This can only occur if c = 0, in which case (1) can be written
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which immediately gives
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or
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(once again absorbing a into the constant c1). But c = 0 implies that the other root of the characteristic
equation (2) is r̃ = −b/a and so (8) can be written

dy

dx
− r̃y = c1 = c1e

rx

which is just equation (6). We can then complete the proof exactly as above.

The differential equation (1) is called homogeneous because of the zero appearing on the right hand side.
It may be worth noting that the method of proof of Theorem 1 can, in certain cases, be used to solve
inhomogeneous equations. For example, the reader should have no trouble solving inhomogeneous equations
of the form

ay′′ + by′ + cy = f(x)

where f(x) is a constant or a simple exponential function.


