Problem 1. If \mathbf{a}, \mathbf{b} and \mathbf{c} are nonzero vectors and $\mathbf{c}=|\mathbf{a}| \mathbf{b}+|\mathbf{b}| \mathbf{a}$, show that \mathbf{c} bisects the angle between \mathbf{a} and \mathbf{b}.

Problem 2. Find the volume of the tetrahedron with vertices $(-4,-5,2),(-2,1,3)$, $(0,3,-4)$ and $(0,-2,2)$.

Problem 3. Find the line of intersection of the two planes $x+3 y+z=4$ and $2 x+4 y+z=-1$.

Problem 4.

a. Find the point where the lines

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =\langle-4 t,-5+3 t,-3-2 t\rangle \\
\mathbf{r}_{2}(t) & =\langle 6-5 t,-t,-5\rangle
\end{aligned}
$$

intersect.
b. Find an equation for the plane containing these lines. Write your answer in the form $a x+b y+c z+d=0$.

Problem 5. Find parametric equations for the line through the point $(0,1,2)$ that is perpendicular to the line $x=1+t, y=1-t, z=2 t$ and intersects this line.

Problem 6. Find a vector function that represents the intersection of the surfaces $x^{2}+y^{2}=4$ and $z=x y$.

Problem 7. Find the length of the curve $\mathbf{r}(t)=\left\langle 2 t^{3 / 2}, \cos 2 t, \sin 2 t\right\rangle, 0 \leq t \leq 1$.

Problem 8. Draw a contour map of the function $f(x, y)=(y-2 x)^{2}$ and use this to sketch the graph of $z=f(x, y)$.

Problem 9. Evaluate the following limits, or show that they do not exist.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{2 x^{2}+3 y^{2}}}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{2 x^{3}+3 y^{6}}}$
c. $\lim _{(x, y, z) \rightarrow(1,1,1)} \frac{2 x y z^{2}}{1-x-y-z}$

Problem 10. Verify that the function $z=\ln \left(e^{x}+e^{y}\right)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0
$$

Problem 11. Match the following functions with their graphs and contour maps (shown on the following page).
a. $\quad \ln \left(x^{2}+y^{2}\right)$
b. $2\left(x^{2}+y^{2}\right)-5$
c. $\frac{1+\cos (x y)}{x^{2}+y^{2}}$
d. $\quad y^{2}-x^{3}$

(A)

(D)

(B)

(i)

(C)

(ii)

(iii)

(iv)

