Calculus III Spring 2009

Problem 1. If **a**, **b** and **c** are nonzero vectors and $\mathbf{c} = |\mathbf{a}|\mathbf{b} + |\mathbf{b}|\mathbf{a}$, show that **c** bisects the angle between **a** and **b**.

Problem 2. Find the volume of the tetrahedron with vertices (-4, -5, 2), (-2, 1, 3), (0, 3, -4) and (0, -2, 2).

Problem 3. Find the line of intersection of the two planes x+3y+z = 4 and 2x+4y+z = -1.

Problem 4.

a. Find the point where the lines

$$\mathbf{r}_{1}(t) = \langle -4t, -5 + 3t, -3 - 2t \rangle$$

$$\mathbf{r}_{2}(t) = \langle 6 - 5t, -t, -5 \rangle$$

intersect.

b. Find an equation for the plane containing these lines. Write your answer in the form ax + by + cz + d = 0.

Problem 5. Find parametric equations for the line through the point (0, 1, 2) that is perpendicular to the line x = 1 + t, y = 1 - t, z = 2t and intersects this line.

Problem 6. Find a vector function that represents the intersection of the surfaces $x^2 + y^2 = 4$ and z = xy.

Problem 7. Find the length of the curve $\mathbf{r}(t) = \langle 2t^{3/2}, \cos 2t, \sin 2t \rangle, 0 \le t \le 1$.

Problem 8. Draw a contour map of the function $f(x, y) = (y - 2x)^2$ and use this to sketch the graph of z = f(x, y).

Problem 9. Evaluate the following limits, or show that they do not exist.

a.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{2x^2+3y^2}}$$

b.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{2x^3 + 3y^6}}$$

c.
$$\lim_{(x,y,z)\to(1,1,1)} \frac{2xyz^2}{1 - x - y - z}$$

Problem 10. Verify that the function $z = \ln(e^x + e^y)$ satisfies the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$$

Problem 11. Match the following functions with their graphs and contour maps (shown on the following page).

- **a.** $\ln(x^2 + y^2)$ **b.** $2(x^2 + y^2) 5$
- c. $\frac{1 + \cos(xy)}{x^2 + y^2}$ d. $y^2 x^3$

(C)

(D)

