Problem 1. If $z=f(x, y)$, where f is differentiable, and

find $d z / d t$ when $t=3$.

Problem 2. If $R=\ln \left(u^{2}+v^{2}+w^{2}\right)$ and $u=x+2 y, v=2 x-y$ and $w=2 x y$, compute $\partial R / \partial x$ and $\partial R / \partial y$ when $x=y=1$.

Problem 3. The tangent line to the level curve $f(x, y)=5$ at the point $(1,2)$ has the equation $3 x-4 y=-5$. Find all the possible directions of $\nabla f(1,2)$. Specify your answers as unit vectors.

Problem 4. The plane $4 x-3 y+8 z=40$ intersects the cone $z^{2}=x^{2}+y^{2}$ in an ellipse. Find an equation for the tangent line to this ellipse at the point $(3,4,5)$.

Problem 5. Find all points at which the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ increases most rapidly in the direction of $\mathbf{i}+\mathbf{j}$.

Problem 6. Let $\mathbf{u}=\langle 3 / 5,4 / 5\rangle$ and $\mathbf{v}=\langle 5 / 13,-12 / 13\rangle$. Suppose f is differentiable at (a, b) and that $D_{\mathbf{u}} f(a, b)=2$ and $D_{\mathbf{v}} f(a, b)=-1$. Find $f_{x}(a, b)$ and $f_{y}(a, b)$.

Problem 7. Find and classify the critical points of the function $f(x, y)=x^{3}-12 x y+8 y^{3}$.

Problem 8. Find the absolute maximum and minimum values of $f(x, y)=x^{2}+y^{2}$ subject to the constraint $2 x+3 y=6$.

Problem 9.

a. Find the absolute maximum value of the function $f(x, y, z)=(x y z)^{1 / 3}$ given that x, y and z are nonnegative numbers satisfying $x+y+z=1$. Carefully justify your answer.
b. Use the result of part (a) to deduce the arithmetic-geometric mean inequality: if $a, b, c \geq$ 0 then

$$
\sqrt[3]{a b c} \leq \frac{a+b+c}{3}
$$

When can equality hold?

Problem 10. Find the absolute maximum and minimum values of $f(x, y)=e^{-x y}$ on the region $\left\{(x, y) \mid x^{2}+4 y^{2} \leq 2\right\}$.

Problem 11. Find the volume of the solid that lies under the plane $3 x+2 y+z=12$ and above the rectangle $R=[0,1] \times[-2,3]$.

