Problem 1. If z = f(x, y), where f is differentiable, and

x	=	g(t)	y	=	h(t)
g(3)	=	4	h(3)	=	5
g'(3)	=	5	h'(3)	=	-4
$f_x(4,5)$	=	6	$f_x(3,3)$	=	1
$f_y(4,5)$	=	-8	$f_{y}(3,3)$	=	10

find dz/dt when t = 3.

Problem 2. If $R = \ln(u^2 + v^2 + w^2)$ and u = x + 2y, v = 2x - y and w = 2xy, compute $\partial R/\partial x$ and $\partial R/\partial y$ when x = y = 1.

Problem 3. The tangent line to the level curve f(x, y) = 5 at the point (1, 2) has the equation 3x - 4y = -5. Find all the possible directions of $\nabla f(1, 2)$. Specify your answers as unit vectors.

Problem 4. The plane 4x - 3y + 8z = 40 intersects the cone $z^2 = x^2 + y^2$ in an ellipse. Find an equation for the tangent line to this ellipse at the point (3, 4, 5).

Problem 5. Find all points at which the function $f(x, y) = x^2 + y^2 - 2x - 4y$ increases most rapidly in the direction of $\mathbf{i} + \mathbf{j}$.

Problem 6. Let $\mathbf{u} = \langle 3/5, 4/5 \rangle$ and $\mathbf{v} = \langle 5/13, -12/13 \rangle$. Suppose f is differentiable at (a, b) and that $D_{\mathbf{u}}f(a, b) = 2$ and $D_{\mathbf{v}}f(a, b) = -1$. Find $f_x(a, b)$ and $f_y(a, b)$.

Problem 7. Find and classify the critical points of the function $f(x, y) = x^3 - 12xy + 8y^3$.

Problem 8. Find the absolute maximum and minimum values of $f(x, y) = x^2 + y^2$ subject to the constraint 2x + 3y = 6.

Problem 9.

a. Find the absolute maximum value of the function $f(x, y, z) = (xyz)^{1/3}$ given that x, y and z are nonnegative numbers satisfying x + y + z = 1. Carefully justify your answer.

b. Use the result of part (**a**) to deduce the *arithmetic-geometric mean inequality*: if $a, b, c \ge 0$ then

$$\sqrt[3]{abc} \le \frac{a+b+c}{3}.$$

When can equality hold?

Problem 10. Find the absolute maximum and minimum values of $f(x, y) = e^{-xy}$ on the region $\{(x, y) | x^2 + 4y^2 \le 2\}$.

Problem 11. Find the volume of the solid that lies under the plane 3x + 2y + z = 12 and above the rectangle $R = [0, 1] \times [-2, 3]$.