Calculus III Spring 2009

EXAM 3 PRACTICE PROBLEMS

Problem 1. Prove the following extension of the Fundamental Theorem of Calculus to two variables: If $\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$, and f(x, y) is continuous, then

$$\iint_{R} f(x, y) \, dA = F(b, d) - F(a, d) + F(a, c) - F(b, c)$$

where $R = [a, b] \times [c, d]$.

Problem 2. Find a function F(x, y) satisfying $\frac{\partial^2 F}{\partial x \partial y} = 6x^2 y$ and use the result of the preceding exercise to evaluate $\iint_R 6x^2 y \, dA$ for the rectangle $R = [0, 1] \times [0, 4]$.

Problem 3. Evaluate $\int_{1}^{3} \int_{0}^{1} y e^{xy} dy dx$.

Problem 4. Sketch the region R inside the circle $r = 4\cos\theta$ and outside the circle r = 1 and find its area. [Ans: $7 \arccos(1/4) + \sqrt{15}/2$]

Problem 5. Let *E* be the region in \mathbb{R}^3 bounded by $z = 4 - y^2$, y = 2x, z = 0 and x - 0. Express the integral $\iiint_E f(x, y, z) \, dV$ as an iterated integral in all 6 possible orders.

Problem 6. Evaluate $\iiint_E x^2 dV$ where *E* is the solid tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1).

Problem 7. Find the volume of the region above the plane z = 1 and inside the sphere $x^2 + y^2 + z^2 = 4$.

Problem 8. Find a linear transformation T(u, v) that carries the square $S = [0, 1] \times [0, 1]$ in the *uv*-plane to the square *R* in the *xy*-plane with vertices (0, 0), (1, 1), (2, 0) and (1, -1). Use this transformation to evaluate $\iint_R xy \, dA$.

Problem 9. Let *R* be the region in the first quadrant enclosed by the curves $x^2 - y^2 = 1$, $x^2 - y^2 = 5$, xy = 1 and xy = 3. Evaluate $\iint_R x^2 + y^2 dA$. [*Hint*: See the second extra credit problem.]

Problem 10. [Extra Credit] Find the volume of the region enclosed by the three cylinders $x^2 + y^2 = a^2$, $x^2 + z^2 = a^2$ and $y^2 + z^2 = a^2$.

Problem 11.[Extra Credit] Consider the transformation (x, y) = T(u, v) whose inverse is given by $(u, v) = T^{-1}(x, y) = (x^2 - y^2, 2xy)$. Show that $\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{4\sqrt{u^2 + v^2}}$.