Exam 3 Practice Problems

Problem 1. Prove the following extension of the Fundamental Theorem of Calculus to two variables: If $\frac{\partial^{2} F}{\partial x \partial y}=f(x, y)$, and $f(x, y)$ is continuous, then

$$
\iint_{R} f(x, y) d A=F(b, d)-F(a, d)+F(a, c)-F(b, c)
$$

where $R=[a, b] \times[c, d]$.
Problem 2. Find a function $F(x, y)$ satisfying $\frac{\partial^{2} F}{\partial x \partial y}=6 x^{2} y$ and use the result of the preceding exercise to evaluate $\iint_{R} 6 x^{2} y d A$ for the rectangle $R=[0,1] \times[0,4]$.

Problem 3. Evaluate $\int_{1}^{3} \int_{0}^{1} y e^{x y} d y d x$.
Problem 4. Sketch the region R inside the circle $r=4 \cos \theta$ and outside the circle $r=1$ and find its area. [Ans: $7 \arccos (1 / 4)+\sqrt{15} / 2]$

Problem 5. Let E be the region in \mathbb{R}^{3} bounded by $z=4-y^{2}, y=2 x, z=0$ and $x-0$. Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in all 6 possible orders.

Problem 6. Evaluate $\iiint_{E} x^{2} d V$ where E is the solid tetrahedron with vertices $(0,0,0)$, $(1,0,0),(0,1,0)$ and $(0,0,1)$.

Problem 7. Find the volume of the region above the plane $z=1$ and inside the sphere $x^{2}+y^{2}+z^{2}=4$.

Problem 8. Find a linear transformation $T(u, v)$ that carries the square $S=[0,1] \times[0,1]$ in the $u v$-plane to the square R in the $x y$-plane with vertices $(0,0),(1,1),(2,0)$ and $(1,-1)$. Use this transformation to evaluate $\iint_{R} x y d A$.

Problem 9. Let R be the region in the first quadrant enclosed by the curves $x^{2}-y^{2}=1$, $x^{2}-y^{2}=5, x y=1$ and $x y=3$. Evaluate $\iint_{R} x^{2}+y^{2} d A$. [Hint: See the second extra credit problem.]

Problem 10.[Extra Credit] Find the volume of the region enclosed by the three cylinders $x^{2}+y^{2}=a^{2}, x^{2}+z^{2}=a^{2}$ and $y^{2}+z^{2}=a^{2}$.

Problem 11.[Extra Credit] Consider the transformation $(x, y)=T(u, v)$ whose inverse is given by $(u, v)=T^{-1}(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$. Show that $\frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{4 \sqrt{u^{2}+v^{2}}}$.

