Assignment 10 Exercise

Recall that we defined a function $f(x, y)$ to be differentiable at a point (a, b) provided that

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-L(x, y)}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0
$$

where $L(x, y)$ is the linear approximation to $f(x, y)$ at (a, b).

Exercise 1. Use the definition above to show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable at every point (a, b).

