In exercises $1-3$ you are given a region R in the $x y$-plane, a region S in the $u v$-plane, and a transformation that maps S to R. Sketch both regions and use the transformation to compute $\iint_{R} f(x, y) d A$ for the indicated function $f(x, y)$.
Exercise 1. R is the parallelogram with vertices $(0,0),(4,1),(1,2)$ and $(5,3) ; S=[0,1] \times$ $[0,1]$; the transformation is $x=4 u+v, y=u+2 v ; f(x, y)=x+y^{2}$.

Exercise 2. R is the triangle with vertices $(2,1),(3,4)$ and $(1,2) ; S$ is the triangle with vertices $(0,3),(3,3)$ and $(2,7)$; the transformation is $x=(u+v) / 3, y=(2 v-u) / 3$; $f(x, y)=x y$.

Exercise 3. R is the region in the first quadrant bounded by the curves $y=x, y=4 x$, $y=1 / x$ and $y=4 / x ; S=[1,2] \times[1,2]$; the transformation is $x=u / v, y=u v ; f(x, y)=$ $\sqrt{y / x} e^{\sqrt{x y}}$.

Exercise 4. Let E denote the region enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
a. Find the area of E using a double integral with respect to x and y.
b. Show that the transformation $x=a u, y=b v$ maps the disk $u^{2}+v^{2} \leq 1$ to the region E.
c. Use part (b) to compute the area of E by converting the integral from part (a) to $u v$-coordinates. Which method of computation is easier?

