Exercise 1. Consider the following four planes:

$$
\begin{array}{ll}
P_{1}: & -4 x-2 y+2 z=4 \\
P_{2}: & 5 x+2 z=5 \\
P_{3}: & x-4 y+3 z=-1 \\
P_{4}: & 6 x+3 y-3 z=-6
\end{array}
$$

Which are parallel? Are any of them identical? For those pairs that are not parallel, determine their lines of intersection.

Exercise 2. Are the points $(1,-1,-2),(2,4,-4)$ and $(5,0,2)$ colinear? If so, determine the line that contains them. If not, determine the plane that contains them, find the area of the triangle they form and determine if that triangle is right-angled.

Exercise 3. Do the lines $\ell_{1}(s)=\langle-1+s, 4+s, 1+3 s\rangle$ and $\ell_{2}(t)=\langle-6 t, 1+9 t,-3 t\rangle$ intersect? If so, find their point of intersection. If not, determine if they are skew or parallel and find the distance between them.

Exercise 4. Find the acute angle between two diagonals of a cube.

Exercise 5. Suppose that $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=2$. Find $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}, \mathbf{u} \cdot(\mathbf{w} \times \mathbf{v}), \mathbf{v} \cdot(\mathbf{u} \times \mathbf{w})$ and $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}$.

Exercise 6. Parameterize the curve of intersection of the cylinder $y^{2}+4 z^{2}=1$ and the plane $x+2 y+3 z=0$. Find the tangent lines to this curve at the points $(-2,1,0)$ and $(-3 / 2,0,1 / 2)$ and the point where these lines intersect.

Exercise 7. Let $f(x, y)=\sqrt{(x-1)^{2}+y^{2}}+\sqrt{(x+1)^{2}+y^{2}}$. Describe and sketch the contours $g(x, y)=k$. What happens as $k \rightarrow \infty$? Use this information to sketch the graph of g.

Exercise 8. Evaluate the following limits, or show that they do not exist.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+3 y^{2}}$
b. $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{2 x^{2}+2 y^{2}+z^{2}}{x^{2}+3 y^{2}+z^{2}}$
c. $\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (y) \ln (x+2)}{x^{4}+y^{2}+2}$
d. $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)\left[\right.$ Hint: Substitute $r=\sqrt{x^{2}+y^{2}}$. What happens to r as $(x, y) \rightarrow(0,0) ?]$

