Exercise 1. Verify that the function $z=\ln \left(e^{x}+e^{y}\right)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0
$$

Exercise 2. Explain why the function $f(x, y)=\sqrt{x+e^{4 y}}$ is differentiable at the point $(3,0)$. Then use a linear approximation to estimate $f(2.91,0.06)$.

Exercise 3. Recall that if $L(x, y)$ is the linear approximation to $f(x, y)$ at the point (a, b) then f is said to be differentiable at (a, b) provided

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-L(x, y)}{\sqrt{(x-a)^{2}+(y-b)^{2}}}=0
$$

Use this definition to prove that $f(x, y)=x^{2}+x y$ is differentiable at any point (a, b).

Exercise 4. If $u=x^{2}+y z, x=p r \cos \theta, y=p r \sin \theta$ and $z=p+r$ find $\frac{\partial u}{\partial p}, \frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta}$ when $p=2, r=3$ and $\theta=0$.

Exercise 5. The temperature at a point (x, y) is $T(x, y)$, measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x=\sqrt{1+t}, y=2+\frac{1}{3} t$, where x and y are measured in centimeters. The temperature function satisfies $T_{x}(2,3)=4$ and $T_{y}(2,3)=3$. How fast is the temperature rising on the bug's path after 3 seconds?

Exercise 6. Find the directions in which the directional derivative of $f(x, y)=y e^{-x y}$ at the point $(0,2)$ has the value 1 .

Exercise 7. Find parametric equations for the tangent line to the curve of intersection of the paraboloid $y=x^{2}+z^{2}$ and the ellipsoid $4 x^{2}+y^{2}+z^{2}=9$ at the point $(-1,2,1)$.

Exercise 8. Find and classify the critical points of $f(x, y)=x y+\ln x+y^{2}$.

Exercise 9. Find the absolute maximum and minimum values of $f(x, y)=4 x y^{2}-x^{2} y^{2}-x y^{3}$ on the closed triangular region in the $x y$-plane with vertices $(0,0),(6,0)$ and $(0,6)$.

Exercise 10. Find the absolute maximum and minimum values of $f(x, y, z)=x y z$ on the sphere of radius 3 centered at the origin. Where do these values occur.

Exercise 11. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

