D

Calculus III Spring 2010

EXAM 3 PRACTICE PROBLEMS

Problem 1. Evaluate the following integrals.

- **a.** $\iint_R xy \, dA$ where R is the region bounded by the curves $x = y^2$ and y = x 2.
- **b.** $\int_{1}^{1} \int_{\sqrt{y}}^{1} \frac{ye^{x^2}}{x^3} dx dy$ [*Hint:* Reverse the order of integration.]
- **c.** $\iint_R x \, dA$ where *R* is the region in the first quadrant bounded by the lines y = 0 and $y = \sqrt{3}x$ and the circle $x^2 + y^2 = 9$.
- **d.** $\int \int \int_{R} xy \, dV$ where *R* is the solid tetrahedron with vertices (0, 0, 0), (1/3, 0, 0), (0, 1, 0) and (0, 0, 1).
- e. $\int \int \int_{H} z^{3} \sqrt{x^{2} + y^{2} + z^{2}} dV$ where *H* is the solid hemisphere that lies above the *xy*-plane and has center (0, 0, 0) and radius 1.
- **f.** $\int_C y \, dx + (x + y^2) \, dy$ where C is the ellipse $4x^2 + 9y^2 = 36$ with counterclockwise orientation.
- **g.** $\int_{C} \mathbf{F} \cdot d\mathbf{r} \text{ where } \mathbf{F}(x, y) = xy\mathbf{i} + x^2\mathbf{j} \text{ and } C \text{ is the curve given by } \mathbf{r}(\mathbf{t}) = \sin t\mathbf{i} + (1+t)\mathbf{j}, \\ 0 \le t \le \pi.$

Problem 2. Find the volume of the solid that is bounded by the cylinder $x^2 + z^2 = 4$ and the planes y = 0 and y + z = 3.

Problem 3. Give five other iterated integrals that are equal to $\int_0^2 \int_0^{y^3} \int_0^{y^2} f(x, y, z) dz dx dy$.

Problem 4. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = \langle 2xy, x^2 \rangle$ and C is the upper half of the semicircle of radius 1 from (1, 2) to (3, 2).

Problem 5. Evaluate $\int_C \sqrt{1+x^3} \, dx + 2xy \, dy$ where C is the triangle with vertices (0,0), (1,0) and (1,3).

Problem 6. Evaluate $\int_C \left(\frac{y^2}{2} - \cos x\right) dx + \left(\frac{x^2}{2} + xy + \cos y\right) dy$ where *C* is the part of the circle $x^2 + y^2 = 1$ above the line y = x, oriented counterclockwise. [Suggestion: Use Green's Theorem to replace *C* with a much simpler curve.]