Calculus III

Spring 2010

Exam 3 Practice Problems

Problem 1. Evaluate the following integrals.
a. $\iint_{R} x y d A$ where R is the region bounded by the curves $x=y^{2}$ and $y=x-2$.
b. $\int_{1}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y$ [Hint: Reverse the order of integration.]
c. $\iint_{R} x d A$ where R is the region in the first quadrant bounded by the lines $y=0$ and $y=\sqrt{3} x$ and the circle $x^{2}+y^{2}=9$.
d. $\iiint_{R} x y d V$ where R is the solid tetrahedron with vertices $(0,0,0),(1 / 3,0,0),(0,1,0)$ and $(0,0,1)$.
e. $\iiint_{H} z^{3} \sqrt{x^{2}+y^{2}+z^{2}} d V$ where H is the solid hemisphere that lies above the $x y$-plane and has center $(0,0,0)$ and radius 1 .
f. $\int_{C} y d x+\left(x+y^{2}\right) d y$ where C is the ellipse $4 x^{2}+9 y^{2}=36$ with counterclockwise
Orientation.
g. $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=x y \mathbf{i}+x^{2} \mathbf{j}$ and C is the curve given by $\mathbf{r}(\mathbf{t})=\sin t \mathbf{i}+(1+t) \mathbf{j}$, $0 \leq t \leq \pi$.

Problem 2. Find the volume of the solid that is bounded by the cylinder $x^{2}+z^{2}=4$ and the planes $y=0$ and $y+z=3$.

Problem 3. Give five other iterated integrals that are equal to $\int_{0}^{2} \int_{0}^{y^{3}} \int_{0}^{y^{2}} f(x, y, z) d z d x d y$.

Problem 4. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=\left\langle 2 x y, x^{2}\right\rangle$ and C is the upper half of the semicircle of radius 1 from $(1,2)$ to $(3,2)$.

Problem 5. Evaluate $\int_{C} \sqrt{1+x^{3}} d x+2 x y d y$ where C is the triangle with vertices $(0,0)$, $(1,0)$ and $(1,3)$.

Problem 6. Evaluate $\int_{C}\left(\frac{y^{2}}{2}-\cos x\right) d x+\left(\frac{x^{2}}{2}+x y+\cos y\right) d y$ where C is the part of the circle $x^{2}+y^{2}=1$ above the line $y=x$, oriented counterclockwise. [Suggestion: Use Green's Theorem to replace C with a much simpler curve.]

