
Calculus III
Spring 2011 Introduction to Maple

The purpose of this document is to help you become familiar with some of the tools the
Maple software package offers for visualizing curves and surfaces in R

2 and R
3. Maple can

also be used to visualize vectors and vector fields, solve equations, integrate and differentiate
functions, and much more, but we’ll get to these later. We’ll start by describing the basic
syntax of Maple commands and then move on to the specific commands that we’ll find most
useful. In every case, we’ll only be scraping the surface. For much more detailed information
on the commands and their syntax and options you can take a look Maple’s extensive “help”
documentation. As you read this, you might find it useful to have Maple running on your
computer so that you can try things out as you read about them.

1 Getting started - the basics

There are various options for displaying input and output in Maple and you should feel free
to use the layout that you prefer. However, the format of examples that we’ll give here
assume that you’re using the “classic” view. If you choose to use a fancier format you don’t
need to change the syntax of these examples, just how they’re typed in.

The command prompt in Maple is the greater than symbol: > (although in some fancy
display formats it’s absent). Everything entered by you will follow one of these prompts.
You’ll never have to actually type in the command prompt: Maple does that part for you.
After typing in a command, to end and execute it, type a semicolon (;) 1 and hit “enter”.
For example

3 + 4;

followed by “enter” will ask Maple to add 3 to 4, producing 7 on the following line. You can
also end a command with a colon (:). The difference is that the colon tells Maple to suppress
its output. This is useful when you want Maple to perform a computation but when you
don’t want to see the results right away (or at all). We’ll see some instances of its use later.

Addition, subtraction and division all use the usual symbols: +,-, /. Multiplication is
done using the asterisk: *. Maple does not interpret concatenation as multiplication. So, to
enter 3y you need to type 3 * y or y*3 and not 3y or y3. Exponentiation is achieved by
using the caret: ^. So, for example, to compute 18 multiplied by 2 to the seventh power,
you would type

18*2^7;

followed by “enter”.

1The most recent versions of Maple no longer seem to require the semicolon. And even in most current versions that do

require it, omitting it typically only results in a warning.
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Overuse of parentheses is never a bad idea when you aren’t sure how Maple might choose
to associate your operations. For example, if we wanted to enter

4x2 + 5

y − 7

we’d type
(4*x^2)/(y-7).

Note that we have enclosed the numerator and denominator in parentheses, with the division
symbol / between them. Any complex fraction should be entered this way, otherwise Maple
will get confused and give you funny results. Parentheses should be used in a similar way
with exponents. y2x−4z would be entered

y^(2*x - 4*z).

Such a use of parentheses is necessary any time the exponent consists of more that a single
symbol. Another thing to watch out for is that Maple only uses the standard parentheses (

and ) to parse expressions. Brackets and braces like { or [ have special uses that we’ll come
to later.

Maple knows most of your basic algebraic and transcendental functions. It knows how to
compute values of the exponential function, natural log, sine, cosine, etc. . Most of these use
the usual names you’d see in a math book or on a programmable calculator. For example, to
compute cos 8 you’d type cos(8); and hit “enter.” To find the natural log of

√
2 you’d type

ln(2^(1/2));. Note that we have used exponential notation for the square root. We could
also have typed sqrt(2). Be aware, however, that to evaluate the exponential function ex

you do not simply enter e^x as you might expect. You actually type exp(x). So to compute
e4/3 you would type exp(4/3);. If you were to try this out, Maple would give you the output

e(
4

3
)

which makes it look like Maple didn’t do anything! If you want to know the decimal expansion
of this or any other “symbolic” number you can use the command evalf. So, continuing
with our exponential example, typing in evalf(exp(4/3)) gives the output 3.793667893.

Okay, now for a few more interesting (and perhaps less obvious) commands. To assign
values to variables you use the assignment operator :=. So, to create a variable named x
and set it equal to 8, you type

x := 8;

end hit “enter”. To create a variable name george and give it the value of x, you’d type

george := x;

and hit “enter”. Variables that have numerical values assigned to them can be used in any
expression the same way a number would be. For example, you could ask Maple to find the
natural log of the variable george the same way you would ask it to find the natural log of
8: by typing ln(george).
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While you can name a variable almost anything in Maple, there are a few restrictions.
Variable names cannot start with numbers (although they can include them otherwise), they
cannot include spaces, and you should avoid special symbols like %, #, etc. since some of these
have special meanings. A good piece of general advice is to only use letters, numbers and
underscores in your variable names, e.g. r 1, number 14, happy face. One nice thing about
variable names is that if you type the name of a greek letter Maple will actually display it as
a greek letter, and with the proper capitalization. So, alpha will be displayed in any output
as α, theta will show up as θ, delta as δ and Delta as ∆.

Be aware that some variable names are automatically assigned values by Maple. The
variable Pi stores the value of π, gamma stores the value of the Euler-Mascheroni constant
γ, and there are many other examples. You don’t really need to know all of the names that
Maple has reserved for it’s own use, since if you try to reassign a value to a protected variable
you’ll simply get an error message.

Variables can actually hold almost any kind of data that Maple knows how to process. In
fact, we will frequently use variables to store equations or even entire plots. Encapsulating
data using variables makes it easier to deal with many “large” objects at once. We’ll see
exactly how later.

2 Simple plots - the plot command

To plot functions of one variable, we use the plot command. The basic syntax to plot the
function f(x) on the domain [a, b] is

plot(f(x),x=a..b);

As an example, to plot the cubic polynomial x3 − 3x + 5 on the interval [−3, 3] you would
type

plot(x^3 - 3*x + 5, x=-3..3); (1)

and hit enter. Figure 1 shows the resulting output. Note that the vertical axis is scaled so
that it includes all values of the function on the specified domain. If you want specify your
own vertical range, simply include a statement of the form y=a..b. For example

plot(x^3 - 3*x + 5, x=-3..3,y=-5..10); (2)

produces the diagram shown in Figure 2.

There are lots of other options you can include in the plot command to customize your
plots, and they are specified in a manner similar to the vertical range, that is by just tacking
them on to the end of the command. To see what we mean, suppose we wanted to thicken
the curve in the previous example and color it green. The appropriate syntax here would be

plot(x^3 - 3*x + 5, x=-3..3,y=-5..10,thickness=3,color=green); (3)

and the result is shown in Figure 3. The interested reader can consult Maple’s help file for
a complete list of the options that can be included in the plot command.
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Figure 1: Output of command (1)
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Figure 3: Output of command (3)

The simplest way to plot two functions on the same graph is to use the plot command
with a slightly modified first argument. Rather than just enter a single function you can enter
any number of functions, enclosed in square brackets ([ and ]) and separated by commas.
Say we wanted to plot sin x and cos x on the same set of axes. We could type

plot([sin(x),cos(x)], x=0..4*Pi); (4)

and hit enter to get the graph shown in Figure 4. Notice that Maple automatically gives
each function a different color. If you’d rather have all of your functions be the same color,
say blue, then you would add the option color = blue to the command above. And if you
want to specify the color of each graph individually, say orange and yellow, you would add
color = [orange, yellow]. Similar comments apply to the thickness option and many
others.

The plot command can also be used to plot vector functions/parametric curves in R
2.

To plot the vector function r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b, replace the single function
we entered previously with the expression [x(t), y(t), t=a..b]. If we want to graph
r(t) = 〈cos(2t), sin(6t)〉 for 0 ≤ t ≤ π we’d type

plot([cos(2*t), sin(6*t), t=0..Pi]); (5)

and after hitting enter we’d get the output shown in Figure 5. Notice that we didn’t have
to specify the ranges of either the horizontal or vertical axes. Maple takes care of this for
you. But if you’d like to specify your own ranges, just add in x= and/or y= options like
we did above. Likewise, options like thickness, color, etc. can be specified just as they were
for the case of plotting functions. And if you want multiple parametric curves on the same
plot, just enclose the expressions [x(t), y(t), t=a..b] for each curve in square brackets,
separated by commas.
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Figure 4: Output of command (4)
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Figure 5: Output of command (5)
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Figure 6: Output of command (6)

3 Advanced plots - the plots library

There are several other types of objects that we’ll be interested in plotting, and these re-
quire us to load a special library of additional plotting commands. To do this just type
with(plots): at the command prompt and hit enter (if you end this input with a semi-
colon instead of a colon it simply lists all of the plot commands that are now available).
While we’ll eventually meet quite a few of the plot commands that come with the plots

library, for now we’ll just focus on a few.

One class of objects Maple can plot using the plots library is curves of the form f(x, y) =
0, i.e. curves that are not necessarily the graphs of functions. To plot these types of curves
we use the implicitplot command. It functions much the same way as the plot command,
except that instead of specifying a function of a single variable we give an equation in both
x and y. We also must specify the ranges of both x and y. So, as an example, if you wanted
to know what the curve x3 + y3 = x2 − xy looks like, you might enter

implicitplot(x^3 + y^3 = x^2 - x*y, x=-1..1, y=-1..1); (6)

The output is shown in Figure 6

Notice that the curve looks rather jagged and it seems to have a disconnected piece in the
third quadrant. This commonly occurs with the implicitplot command due to the way
that Maple produces its graphs, but is easily rectified. We include the grid option. If add
grid=[150,150] to the command 6 we get the output shown in Figure 7, which is much
smoother. In particular, we see that the odd piece in the third quadrant isn’t disconnected
from the rest of the curve after all! The larger the grid size the more accurate the resulting
output will be, but Maple will also have to think a lot longer to draw the diagram. As
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Figure 7: Output of command (6) with the option grid=[150,150] added.

with the ordinary plot command, options like thickness, color etc. can be specified in the
implicitplot command, too.

The plots library also allows us to graph vector functions in R
3 with the spacecurve

command. Let’s say that we want to see what the curve r(t) = 〈sin t, cos 2t, sin 2t cos 2t〉,
0 ≤ t ≤ 2π looks like. As a first attempt we’d enter

spacecurve([sin(t),cos(2*t),sin(2*t)*cos(2*t)],t=0..2*Pi); (7)

and get the diagram shown in Figure 8. Notice that if you hold down the button on your
mouse and move your cursor while it’s over the graph you can rotate it in various ways. This
is nice, and should help you get a feel for the general shape of the curve, but where, exactly,
is it in space? There are no axes for reference! This is easily resolved by adding the axes

option. If we add in axes = normal to command 7 we get the plot shown in Figure 9, which
has a nice set of 3 dimensional axes.

Another nice axis option is axes=boxed which puts your curve in a box with edges labeled
with coordinates. We’ll leave it to the reader to experiment with this option, as well as
changing the thickness, color, viewing window, etc. of the curve to suit your preferences.

As a final example of advanced plots, let’s talk about the implicitplot3d command.
This functions much the same as the implicitplot command, but allows us to visualize
solutions to equations of the form f(x, y, z) = 0, which are surfaces. For a basic example,
let’s get Maple to plot a sphere of radius 1. We know points on the sphere satisfy the
equation x2 + y2 + z2 = 1, and so the command we want is

implicitplot3d(x^2 + y^2 + z^2 = 1, x=-1..1,y=-1..1,z=-1..1); (8)

which results in the graph shown in Figure 10. As with the implicitplot command you
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Figure 8: Output of command (7)
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Figure 9: Output of command (7) with the option axes=normal
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Figure 10: Output of command (8)

must specify the range of every variable, and like spacecurve you don’t get any axes unless
you ask for them using the axes option. Like spacecurve, too, you can grab the plot with
your mouse and rotate it. If the sphere looks a little coarse to you, you can use the grid

option, being sure to give 3 numbers instead of just 2 (as we did for implicitplot). Try
grid=[20,20,20] and see what you think.

Since the graph of a function of two variables f(x, y) corresponds to the equation z =
f(x, y), you can certainly use the implicitplot3d command to draw it. But, as with the
case of functions of a single variable, Maple has a built in plotting feature for this special case.
It’s called plot3d and it works in much the same way as the plot command. Suppose we
want to graph the function f(x, y) = x2y/(x2+y2) on the rectangular domain [−5, 5]×[−5, 5].
We’d type

plot3d(x^2*y/(x^2 + y^2),x=-5..5,y=-5..5,axes=normal,view=-2..2); (9)

and press “enter,” obtaining the output shown in Figure 11. The x= and y= entries are
necessary and give the limits of the plot in the xy-plane. Although we’ve made the ranges
the same in this example, this isn’t necessary. As with our earlier 3-dimensional plots, we
need to include the axes option so that the coordinate axes are visible, although we can
omit it if we don’t want to see the axes. The option view limits the z aspect of the plot to
the region with −2 ≤ z ≤ 2. It’s optional, but can be very useful for plotting functions that
have vertical asymptotes or grow very rapidly in their domain, since without it Maple will
just plot the largest and smallest possible z values it finds. This can result in a very skewed
graph.

Plotting contours of a function of two variables can also be achieved with the implicitplot
command, since every contour of a function f(x, y) is just a curve defined by the implicit
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Figure 11: Output of command (9)

equation f(x, y) = k. While this can be very useful for visualizing specific individual con-
tours, it’s very inconvenient for producing contour plots, which would require us to assemble
many implicit plots on top of one another (we address the topic of combining plots shortly).
Again, Maple includes a plot command that readily produces contour plots with minimal
effort. It’s called contourplot and it works in much the same way as implicitplot. As an
example, the input

contourplot((x^2+y^2-1)*x,x=-1..1,y=0..1); (10)

will produce the contour diagram of f(x, y) = (x2 + y2 − 1)x shown in Figure 12. As with
the implicitplot command, notice that the contours produced are fairly jagged. We can
get a better feeling for the true nature of the contours using the grid option. We can further
improve the visualization by including more contours with the contours option. These are
both implemented with the command

contourplot((x^2+y^2-1)*x,x=-1..1,y=0..1,contours=20,grid=[50,50]); (11)

the improved output of which is given in Figure 13.

There’s one final comment that should be made regarding options to the plot commands
like grid and contours. Because these take whole number arguments which produce a
number of subdivisions of the domain or range of a function, the parity of the arguments
(whether they are even or odd) can change the detail obtained in the final diagram. We’ll
leave it to the reader to decipher why this is the case, but as an example, consider the
following (seemingly trivial) modification of (11):

contourplot((x^2+y^2-1)*x,x=-1..1,y=0..1,contours=21,grid=[50,50],thickness=3);

(12)
whose output is shown in Figure 14. The main change in the input is the number of contours
(21 now, 20 previously). The thickness argument was included simply to help illuminate
the contour that has now manifested itself along the y-axis.
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Figure 12: Output of command (10)

Figure 13: Output of command (11)
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Figure 14: Output of command (12)

4 Combining Plots

So now you can plot surfaces and curves. But what if you want to put multiple plots on
the same graph? For instance, to visualize the intersection of two surfaces you might like
to plot them on the same set of axes. You might even like to improve your visualization
by including a parametric version of the curve in a contrasting color with a relatively large
thickness. These types of tasks are easily achieved by saving your plots in variables and then
using the display command.

As with plot and implicitplot, the display command can only be used after loading
the plots package (see above). The easiest way to use display is to compute your plots
first, store them as variables and then tell display to show them to you.

As usual, we’ll illustrate with an example. Suppose we’d like to look at the intersection
of the surfaces y2 = x2 + z2 and z = y2. We can plot the later surface using plot3d and
the former with implicitplot3d. We use the usual syntax, but now we store our input to
separate variables, and suppress the output:

p1:=plot3d(y^2,x=-4..4,y=-2..2,color=grey):

p2:=implicitplot3d(y^2=x^2+z^2,x=-4..4,y=-4..4,z=0..4,grid=[25,25,25],color=blue):

Notice that we haven’t included the axes, and we’ve made each surface a different color to
help us later. To put these plots together we now enter

display(p1,p2,view=[-2..2,-2..2,0..2],axes=normal); (13)
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The first two arguments are the variable names we’ve stored our plots in, and we can add
any number of plots in this way. The next (optional) argument tells us the x, y and z ranges
of the plots that we’d like to see, and good choices can be determined by trial and error. The
final option asks Maple to show the coordinate axes, as we’ve seen before. One nice aspect
of display is that we can create our original plots with minimal restrictions or options,
and then impose whatever restrictions we’d like all at once when we want to take a look
at our combined pictures. The output of (13) is shown in Figure 15. Although the default
viewpoint isn’t that illuminating, a quick click-and-drag should help you get a nice view of
the intersection.

If we want to add the intersection curve itself, we need to parametrize it first (sorry, I
won’t tell you how to get Maple how to do that for you). It turns out that the curve of
intersection of the surfaces we’ve been considering can be parametrized by

x(t) = sin(t) cos(t),

y(t) = sin(t),

z(t) = sin2(t),

for 0 ≤ t ≤ 2π, an exercise we leave to the reader. We can store this as a space curve plot
using the command

p3:=spacecurve([sin(t)*cos(t),sin(t),sin(t)^2],t=0..2*Pi,color=red,thickness=2):

(the options beyond the t domain being included solely for the purposes of visualization)
and display it with the previous two surfaces using

display(p1,p2,p3,view=[-2..2,-2..2,0..2],axes=normal); (14)

The resulting output, which again is better understood by dragging it around, is shown in
Figure 16.

5 Closing comments

We’ve barely even scratched the surface of all the things one can do with Maple, but hopefully
you’ve seen enough to get in and play around with some of its features. You should definitely
sit down and experiment with Maple to get a feel for it and to see what kind of wild graphs
you can create! Eventually we’ll learn how to plot functions of 2 variables, combine different
types of plots, and even integrate and differentiate functions, but if you want to get a head
start check out Maple’s help documentation. It’s an extremely valuable resource, and even if
you don’t understand the abstract syntax of a command it always includes lots of examples.
In fact, I learned how to use Maple almost entirely by reading its help files! And don’t worry:
with a little practice you’ll get to know all of the commands we’ll need and their various
options and you might even wonder how you ever got along without it.
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Figure 15: Output of command (13)

Figure 16: Output of command (14)
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