INTRODUCTION TO ABSTRACT MATHEMATICS Spring 2008 Review Problems for Exam 2

Review Problem 1: Let G, H be groups and let $\phi : G \to H$ be a function.

- a. If we wanted to show that G is Abelian, what should the first line of the proof be.
- b. If we wanted to show that ϕ is one-to-one, what should the first line of the proof be.
- c. If we wanted to show that ϕ is onto, what should the first line of the proof be.
- d. If we wanted to show that ϕ is operation preserving, what should the first line of the proof be.

Review Problem 2: Define a binary operation on a set G.

Review Problem 3: Define a group.

Review Problem 4: Define what it means for a group to be Abelian.

Review Problem 5: State Cayley's theorem.

Review Problem 6: State the Fundamental Theorem of Cyclic groups.

Review Problem 7: State the Division Algorithm.

Review Problem 8: Given a group G with subgroup H of G, we define the set

$$xHx^{-1} = \{xhx^{-1} \mid h \in H\}.$$

We then define the *normalizer of* H to be

$$N(H) = \{ x \in G \mid xHx^{-1} = H \}.$$

Show that N(H) < G.

Review Problem 9: Let G be a finite group and suppose $x, y, z \in G$.

- a. Show that |xy| = |yx|.
- b. Show that it is not necessarily the case that |xyz| = |zyx|.

Review Problem 10: Is there an infinite group where each element has finite order? Justify.

Review Problem 11: Is there a finite group with an element of infinite order?

Review Problem 12: Prove that $\mathbb{Z}_m \times \mathbb{Z}_n$ is a group. Assume that the binary operation is modular addition on each component.

Review Problem 13: Find all subgroups of $\mathbb{Z}_4 \times \mathbb{Z}_5$ and $\mathbb{Z}_4 \times \mathbb{Z}_6$.

Review Problem 14: Is $\mathbb{Z}_3 \times \mathbb{Z}_4$ cyclic? How about $\mathbb{Z}_4 \times \mathbb{Z}_6$?

Review Problem 15:

- (a) Is (\mathbb{Z}, \cdot) a group?
- (b) Find all subsets $X \subset \mathbb{Z}$ so that (X, \cdot) is a group.
- (c) If X is as in part (b), is $(X, \cdot) < (\mathbb{Z}, +)$?

Review Problem 16: Show that isomorphism is an equivalence relation on the collection of groups.

Review Problem 17: Let G be an Abelian group and let $a \in G$. Given $x, y \in G$ define

$$x \times y := xya^{-1}.$$

- a. Prove that (G, \times) is a group.
- b. Prove that (G, \times) is isomorphic to G with its original operation.

Review Problem 18: Let G be an Abelian group with identity e and let $n \in \mathbb{N}$. Let $G[n] = \{x \in G \mid x^n = e\}$. Prove that G[n] < G.

Review Problem 19: Find all subgroups of \mathbb{Z} that contain both 6 and 15.

Review Problem 20: Let G be a group and suppose that $a_1, a_2, \ldots, a_n \in G$. Show that

$$(a_1a_2\cdots a_n)^{-1} = a_n^{-1}\cdots a_2^{-1}a_1^{-1}$$