# Math 2326 - Introduction to Abstract Mathematics Review Problems for Exam 3 

Problem 1: State the definition of a countable set.

Problem 2: State the Archimedean Principle.

Problem 3: State the Axiom of Completeness for $\mathbb{R}$.

Problem 4: State the definition of supremum and infimum of a bounded set $A \subseteq \mathbb{R}$.

Problem 5: State the Nested Interval Property.

Problem 6: State the definition of an $\varepsilon$-neighborhood of $a \in \mathbb{R}$.

Problem 7: State the definition of an open set.

Problem 8: State Cantor's Theorem.

Problem 9: Show that $\left\{x \in \mathbb{R} \mid x \in \mathbb{Q}\right.$ or $\left.x^{2} \in \mathbb{Q}\right\}$ is countable.

Problem 10: Show that the set of all quadratic polynomials with rational coefficients is countable.

Problem 11: Let $A, B$ be nonempty subsets of $\mathbb{R}$ such that for all $x \in A$ and $y \in B$, we have that $x \leq y$. Show that $\sup A \leq \inf B$. Furthermore, show that $\sup A=\inf B$ if and only if for all $\varepsilon>0$, we may find $x \in A$ and $y \in B$ such that $y-x<\varepsilon$.

Problem 12: Given $x \in \mathbb{R}$, let $S_{x}=\{q \in \mathbb{Q} \mid q \leq x\}$. Show that $\sup S_{x}=x$.

Problem 13: Let $A, B \subseteq \mathbb{R}$ be nonempty and bounded. Let $A \cdot B=\{x \cdot y \mid x \in A, y \in B\}$. Show that
a) $A \cdot B$ is bounded
b) $\sup (A \cdot B)=(\sup A)(\sup B)$
c) $\inf (A \cdot B)=(\inf A)(\inf B)$

Problem 14: Show that $\lim \frac{1}{\sqrt{n}}=0$.

Problem 15: Show that $\lim (-1)^{n}$ does not exist.

Problem 16: Show that the Axiom of Completeness holds for $\mathbb{Z}$.

Problem 17: Show that the Axiom of Completeness does not hold for $\mathbb{Q}$.

Problem 18: Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
a) Show that if $\left\{x_{n}\right\}$ is convergent then it is bounded.
b) State the contrapositive statement of the previous item.
c) Using the previous items, describe the heuristics to prove the following: If $x_{n} \neq 0$ and $\lim \frac{x_{n+1}}{x_{n}}=L>1$, then $\left\{x_{n}\right\}$ diverges.

Problem 19: Let $\left\{y_{n}\right\}$ be a bounded sequence and $\left\{x_{n}\right\}$ be a sequence that converges to 0 . Show that $\lim y_{n} x_{n}=0$. Find a counter-example showing that we must assume that $\left\{y_{n}\right\}$ is bounded.

Problem 20: Show that the set of irrational numbers is dense in $\mathbb{R}$.

Problem 21: Show that $\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} \leq \frac{1}{\sqrt{2 n+1}}$ and use this to compute $\lim \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}$.

Problem 22: Show that if $\lim x_{n}=a$ and $\lim \left(x_{n}-y_{n}\right)=0$, then $\lim y_{n}=a$.

