Introduction to Abstract Mathematics
 Spring 2008
 Final Exam Review Problems

Problem 1: Let R be a relation from A to B. We define the inverse of R to be the relation

$$
R^{-1}=\{(b, a) \in B \times A \mid(a, b) \in R\}
$$

If S is a relation from B to C then we define the composition of S and R to be the relation

$$
S \circ R=\{(a, c) \in A \times C \mid \text { there exists } b \in B \text { such that }(a, b) \in R \text { and }(b, c) \in S\} .
$$

Prove the following.
a. $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$.
b. If T is a relation from C to D then

$$
T \circ(R \circ S)=(T \circ R) \circ S
$$

Problem 2: Let $A=\mathbb{N} \times \mathbb{N}$. Define a relation \sim on A by $(a, b) \sim(c, d)$ if and only if $a^{b}=c^{d}$.
a. Show that \sim is an equivalence relation on A.
b. Find the equivalence classes of $(16,1)$ and $(3,4)$.
c. Find an equivalence class with exactly 4 elements.
d. Find an equivalence class with infinitely many elements.

Problem 3: Let $A=\mathbb{R} \backslash\{1\}$ and let

$$
f(x)=\frac{x+1}{x-1}
$$

a. Show that $f: A \rightarrow A$.
b. Determine whether or not A is an injection.
c. Determine whether or not A is a surjection.
d. Does f have an inverse? If so, find it. If not, explain.

Problem 4: If A is a set and $f: A \rightarrow \mathcal{P}(A)$ is any function, prove that f is not surjective by showing that $\{a \in A \mid a \notin f(a)\}$ is not in the range of f. Conclude that $A \nsim \mathcal{P}(A)$.

Problem 5: Let $\phi: \mathbb{Q} \rightarrow \mathbb{Q}$ be an automorphism of $(\mathbb{Q},+)$. Prove that there is an $r \in \mathbb{Q}, r \neq 0$, so that $\phi(x)=r x$ for all $x \in \mathbb{Q}$. [Hint: $r=\phi(1)$.]

Problem 6: Find all subgroups of $(\mathbb{Z},+)$.

Problem 7: Let G be a group. We define the center of G to be

$$
Z(G)=\{x \in G \mid g x=x g \text { for every } g \in G\}
$$

In other words, $Z(G)$ consists of the elements of G which commute with everything in G. Show that $Z(G)<G$.

Problem 8: Determine if the following groups are isomorphic. Be sure to justify your answers.
(a) $\mathbb{Z}_{6} \oplus \mathbb{Z}_{10}$ and \mathbb{Z}_{30}
(b) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$ and \mathbb{Z}_{18}
(c) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5}$ and \mathbb{Z}_{15}

Problem 9: For a positive integer n, let $\mathcal{N}(n)$ be the set of subsets of \mathbb{N} having exactly n elements. Show that for all $n \geq 1, \mathcal{N}(n)$ is countable.

Problem 10: Show that $\lim \left(a_{n}+b_{n}\right)=\lim a_{n}+\lim b_{n}$.

Problem 11: Let A, B be open, then the set $A+B=\{x+y \mid x \in A, y \in B\}$ is open.

Problem 12: Let $a \neq 0$. If $\lim \frac{x_{n}}{a}=1$, then $\lim x_{n}=a$.

