Math 2326 - Introduction to Abstract Mathematics Assignment 12 - Due Friday, February 15

Problem 43:

Let $m \in \mathbb{N}$ be a *fixed* positive integer. Given $x, y \in \mathbb{Z}$ we say $x \equiv y \pmod{m}$ if and only if *m* divides x - y. Show that \equiv is an equivalence relation on \mathbb{Z} . This equivalence is called *congruence modulo m*.

Problem 44:

Let $A = \mathbb{R} \times \mathbb{R} - \{(0,0)\}$. Given $(a,b), (c,d) \in A$, define $(a,b) \sim (c,d)$ to mean (a,b) = (rc,rd) for some $r \in \mathbb{R}$ with $r \neq 0$.

- a. Prove that \sim is an equivalence relation on A.
- b. Viewing $\mathbb{R} \times \mathbb{R}$ as the set of points in a plane, describe the equivalence class [(a, b)] geometrically.
- c. Given $(a, b) \in A$ show that [(a, b)] belongs to $\{[(x, 1)] \mid x \in \mathbb{R}\} \cup \{[(1, 0)]\}$.

Problem 45:

Prove that the relation

$$R = \{(x, y) \in \mathbb{Z}^2 | |x - y| \le 2\}$$

is *not* an equivalence relation.

Problem 46:

If $A = \{1, 2, 3, \dots, 9, 10\}$ and $S = \{\{1, 3, 5\}, \{2, 8\}, \{4, 6, 9, 10\}, \{7\}\}$, find an equivalence relation on A whose set of equivalence classes is exactly S.