Math 2326 - Introduction to Abstract Mathematics Assignment 12 - Due Friday, February 15

Problem 43:

Let $m \in \mathbb{N}$ be a fixed positive integer. Given $x, y \in \mathbb{Z}$ we say $x \equiv y(\bmod m)$ if and only if m divides $x-y$. Show that \equiv is an equivalence relation on \mathbb{Z}. This equivalence is called congruence modulo m.

Problem 44:

Let $A=\mathbb{R} \times \mathbb{R}-\{(0,0)\}$. Given $(a, b),(c, d) \in A$, define $(a, b) \sim(c, d)$ to mean $(a, b)=(r c, r d)$ for some $r \in \mathbb{R}$ with $r \neq 0$.
a. Prove that \sim is an equivalence relation on A.
b. Viewing $\mathbb{R} \times \mathbb{R}$ as the set of points in a plane, describe the equivalence class $[(a, b)]$ geometrically.
c. Given $(a, b) \in A$ show that $[(a, b)]$ belongs to $\{[(x, 1)] \mid x \in \mathbb{R}\} \cup\{[(1,0)]\}$.

Problem 45:

Prove that the relation

$$
R=\left\{(x, y) \in \mathbb{Z}^{2}| | x-y \mid \leq 2\right\}
$$

is not an equivalence relation.

Problem 46:

If $A=\{1,2,3, \ldots, 9,10\}$ and $\mathcal{S}=\{\{1,3,5\},\{2,8\},\{4,6,9,10\},\{7\}\}$, find an equivalence relation on A whose set of equivalence classes is exactly \mathcal{S}.

