Math 2326 - Introduction to Abstract Mathematics
 Assignment 14 - Due Wednesday, February 20

Problem 53:

Let $f: X \rightarrow Y$ be a function and suppose that the functions $g: Y \rightarrow X$ and $h: Y \rightarrow X$ are both inverses for f, i.e. that $f \circ g=f \circ h=I_{Y}$ and $g \circ f=h \circ f=I_{X}$. Prove that $g=h$.

Problem 54:

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
a. Prove that if f and g are both injective then so is $g \circ f$.
b. Prove that if f and g are both surjective then so is $g \circ f$.
c. If $g \circ f$ is injective do either of f or g have to be injective? Prove your answer.
d. If $g \circ f$ is surjective do either of f or g have to be surjective? Prove your answer.

Problem 55:

Prove that the function $f: \mathbb{R} \backslash\{2\} \rightarrow \mathbb{R}$ defined by $f(x)=x /(x-2)$ is not a bijection. Find a set $Y \subset \mathbb{R}$ so that the function $\widehat{f}: \mathbb{R} \backslash\{2\} \rightarrow Y$ given by the same formula is a bijection, and find \widehat{f}^{-1}.

