Math 2326 - Introduction to Abstract Mathematics Assignment 16 - Due Monday, February 25

Problem 59: Show that if $x \in \mathbb{Z}$, then x^{3} can be written as $9 k, 9 k+1$, or $9 k+8$ for some $k \in \mathbb{Z}$.

Problem 60: Suppose $a, b, c \in \mathbb{Z}$ such that a divides both b and c. Show that a divides $b x+c y$ for every $x, y \in \mathbb{Z}$.
(Recall: For $x, y \in \mathbb{Z}$ we say that x divides y if there exists $k \in \mathbb{Z}$ such that $x k=y$.)

