Math 2326 - Introduction to Abstract Mathematics Assignment 18 - Due Monday, March 3

Problem 64: Suppose that $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Show that if both a and b divide c, then $a b$ divides c.

Problem 65: Suppose $n \in \mathbb{N}$ and let $a, b, c, d \in \mathbb{Z}$ such that

$$
\begin{aligned}
a & \equiv b(\bmod n) \text { and } \\
c & \equiv d(\bmod n) .
\end{aligned}
$$

a. Show that $(a+c) \equiv(b+d)(\bmod n)$.
b. Show that $a c \equiv b d(\bmod n)$.

Problem 66: Let G be a group and assume $a, b, c \in G$.
a. Prove the cancellation law of groups: $b a=c a$ implies $b=c$ and $a b=a c$ implies $b=c$.
b. Show that $a b=c a$ does not necessarily imply that $b=c$.

Problem 67: Prove the following statement: In a group G, inverses are unique.

