Math 2326 - Introduction to Abstract Mathematics Assignment 19 - Due Wednesday, March 5

Problem 68: Suppose that G is a group and that $g \in G$. Show that for all $n \in \mathbb{N}$, $\left(g^{n}\right)^{-1}=\left(g^{-1}\right)^{n}$.

Problem 69: Let n be an integer with $n \geq 2$ and consider the set

$$
U(n)=\{d \mid \operatorname{gcd}(d, n)=1 \text { and } 1 \leq d<n\} .
$$

For example $U(12)=\{1,5,7,11\}$. If we define multiplication in $U(n)$ as multiplication $\bmod n$, then $U(n)$ will be a group for all $n \geq 2$. For example, in $U(12), 5 \cdot 7=11$ since $35 \equiv 11(\bmod 12)$.
a. List the elements of $U(14)$ and state the order of $U(14)$.
b. Make a Cayley table for $U(14)$.
c. Find the orders of each element in $U(14)$.

Problem 70: Consider the group \mathbb{Z}_{12}.
a. What is the order of \mathbb{Z}_{12} ?
b. Find the orders of each element in \mathbb{Z}_{12}.
c. When looking at the elements that have order 12 , what do they have in common relative to the order of the group.
d. Let $S=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. Show that $\mathbb{Z}_{12}=\{5 k \mid k \in S\}$. Here we take $5 k=\overbrace{5+5+\cdots+5}^{\text {k-times }} \bmod 12$.

