Math 2326 - Introduction to Abstract Mathematics Assignment 3 - Due Wednesday, January 25

You will need to use the following definitions to complete some of the problems.
Definition: Let x and y be integers. We say that x divides y if there is an integer k such that $k x=y$.
Definition: For any integer $n \geq 2,\binom{n}{2}=\frac{n(n-1)}{2}$.

Problem 12: Suppose x, y, and z are integers.
a. If x divides y and x divides z, show that x^{2} divides $y z$.
b. In class we proved that if x divides y or x divides z, then x divides $y z$. Write both the converse and the contrapositive of this statement. If the converse is true, prove it, and if not, then find a counterexample.

Problem 13: Show that for any integer $n \geq 2,\binom{n}{2}$ is an integer.

Problem 14: Find a definition for the the set of real numbers, $\mathbb{R} .^{1}$

[^0]
[^0]: ${ }^{1}$ Please include your source, which cannot be Wikipedia

